Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brett M. Barney is active.

Publication


Featured researches published by Brett M. Barney.


Journal of Biological Chemistry | 2004

Substrate interaction at an iron-sulfur face of the FeMo-cofactor during nitrogenase catalysis

Brett M. Barney; Robert Y. Igarashi; Patricia C. Dos Santos; Dennis R. Dean; Lance C. Seefeldt

Nitrogenase catalyzes biological dinitrogen fixation, the reduction of N2 to 2NH3. Recently, the binding site for a non-physiological alkyne substrate (propargyl alcohol, HC≡C-CH2OH) was localized to a specific Fe-S face of the FeMo-cofactor approached by the MoFe protein amino acid α-70Val. Here we provide evidence to indicate that the smaller alkyne substrate acetylene (HC≡CH), the physiological substrate dinitrogen, and its semi-reduced form hydrazine (H2N-NH2) interact with the same Fe-S face of the FeMo-cofactor. Hydrazine is a relatively poor substrate for the wild-type (α-70Val) MoFe protein. Substitution of the α-70Val residue by an amino acid having a smaller side chain (alanine) dramatically enhanced hydrazine reduction activity. Conversely, substitution of α-70Val by an amino acid having a larger side chain (isoleucine) significantly lowered the capacity of the MoFe protein to reduce dinitrogen, hydrazine, or acetylene.


Biochemistry | 2011

Characterization of a Fatty Acyl-CoA Reductase from Marinobacter aquaeolei VT8: A Bacterial Enzyme Catalyzing the Reduction of Fatty Acyl-CoA to Fatty Alcohol

Robert M. Willis; Bradley D. Wahlen; Lance C. Seefeldt; Brett M. Barney

Fatty alcohols are of interest as a renewable feedstock to replace petroleum compounds used as fuels, in cosmetics, and in pharmaceuticals. One biological approach to the production of fatty alcohols involves the sequential action of two bacterial enzymes: (i) reduction of a fatty acyl-CoA to the corresponding fatty aldehyde catalyzed by a fatty acyl-CoA reductase, followed by (ii) reduction of the fatty aldehyde to the corresponding fatty alcohol catalyzed by a fatty aldehyde reductase. Here, we identify, purify, and characterize a novel bacterial enzyme from Marinobacter aquaeolei VT8 that catalyzes the reduction of fatty acyl-CoA by four electrons to the corresponding fatty alcohol, eliminating the need for a separate fatty aldehyde reductase. The enzyme is shown to reduce fatty acyl-CoAs ranging from C8:0 to C20:4 to the corresponding fatty alcohols, with the highest rate found for palmitoyl-CoA (C16:0). The dependence of the rate of reduction of palmitoyl-CoA on substrate concentration was cooperative, with an apparent K(m) ~ 4 μM, V(max) ~ 200 nmol NADP(+) min(-1) (mg protein)(-1), and n ~ 3. The enzyme also reduced a range of fatty aldehydes with decanal having the highest activity. The substrate cis-11-hexadecenal was reduced in a cooperative manner with an apparent K(m) of ~50 μM, V(max) of ~8 μmol NADP(+) min(-1) (mg protein)(-1), and n ~ 2.


Biochemistry | 2008

Crystal Structure of the L Protein of Rhodobacter sphaeroides Light-Independent Protochlorophyllide Reductase with MgADP Bound : A Homologue of the Nitrogenase Fe Protein

Ranjana Sarma; Brett M. Barney; Trinity L. Hamilton; Alma Jones; Lance C. Seefeldt; John W. Peters

The L protein (BchL) of the dark-operative protochlorophyllide reductase (DPOR) from Rhodobacter sphaeroides has been purified from an Azotobacter vinelandii expression system; its interaction with nucleotides has been examined, and the X-ray structure of the protein has been determined with bound MgADP to 1.6 A resolution. DPOR catalyzes the reduction of protochlorophyllide to chlorophyllide, a reaction critical to the biosynthesis of bacteriochlorophylls. The DPOR holoenzyme is comprised of two component proteins, the dimeric BchL protein and the heterotetrameric BchN/BchB protein. The DPOR component proteins share significant overall similarities with the nitrogenase Fe protein (NifH) and the MoFe (NifDK) protein, the enzyme system responsible for reduction of dinitrogen to ammonia. Here, BchL was expressed in A. vinelandii and purified to homogeneity using an engineered polyhistidine tag. The purified, recombinant BchL was found to contain 3.6 mol of Fe/mol of BchL homodimer, consistent with the presence of a [4Fe-4S] cluster and analogous to the [4Fe-4S] cluster present in the Fe protein. The MgATP- and MgADP-induced conformational changes in BchL were examined by an Fe chelation assay and found to be distinctly different from the nucleotide-stimulated Fe release observed for the Fe protein. The recombinant BchL was crystallized with bound MgADP, and the structure was determined to 1.6 A resolution. BchL is found to share overall structural similarity with the nitrogenase Fe protein, including the subunit bridging [4Fe-4S] cluster and nucleotide binding sites. Despite the high level of structural similarity, however, BchL is found to be incapable of substituting for the Fe protein in a nitrogenase substrate reduction assay. The newly determined structure of BchL and its comparison to its close homologue, the nitrogenase Fe protein, provide the basis for understanding how these highly related proteins can discriminate between their respective functions in microbial systems where each must function simultaneously.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Connecting nitrogenase intermediates with the kinetic scheme for N2 reduction by a relaxation protocol and identification of the N2 binding state.

Dmitriy Lukoyanov; Brett M. Barney; Dennis R. Dean; Lance C. Seefeldt; Brian M. Hoffman

A major obstacle to understanding the reduction of N2 to NH3 by nitrogenase has been the impossibility of synchronizing electron delivery to the MoFe protein for generation of specific enzymatic intermediates. When an intermediate is trapped without synchronous electron delivery, the number of electrons, n, it has accumulated is unknown. Consequently, the intermediate is untethered from kinetic schemes for reduction, which are indexed by n. We show that a trapped intermediate itself provides a “synchronously prepared” initial state, and its relaxation to the resting state at 253 K, conditions that prevent electron delivery to MoFe protein, can be analyzed to reveal n and the nature of the relaxation reactions. The approach is applied to the “H+/H− intermediate” (A) that appears during turnover both in the presence and absence of N2 substrate. A exhibits an S = ½ EPR signal from the active-site iron–molybdenum cofactor (FeMo-co) to which are bound at least two hydrides/protons. A undergoes two-step relaxation to the resting state (C): A → B → C, where B has an S = 3/2 FeMo-co. Both steps show large solvent kinetic isotope effects: KIE ≈ 3–4 (85% D2O). In the context of the Lowe–Thorneley kinetic scheme for N2 reduction, these results provide powerful evidence that H2 is formed in both relaxation steps, that A is the catalytically central state that is activated for N2 binding by the accumulation of n = 4 electrons, and that B has accumulated n = 2 electrons.


Applied and Environmental Microbiology | 2009

Purification, Characterization, and Potential Bacterial Wax Production Role of an NADPH-Dependent Fatty Aldehyde Reductase from Marinobacter aquaeolei VT8

Bradley D. Wahlen; Whitney S. Oswald; Lance C. Seefeldt; Brett M. Barney

ABSTRACT Wax esters, ester-linked fatty acids and long-chain alcohols, are important energy storage compounds in select bacteria. The synthesis of wax esters from fatty acids is proposed to require the action of a four-enzyme pathway. An essential step in the pathway is the reduction of a fatty aldehyde to the corresponding fatty alcohol, although the enzyme responsible for catalyzing this reaction has yet to be identified in bacteria. We report here the purification and characterization of an enzyme from the wax ester-accumulating bacterium Marinobacter aquaeolei VT8, which is a proposed fatty aldehyde reductase in this pathway. The enzyme, a 57-kDa monomer, was expressed in Escherichia coli as a fusion protein with the maltose binding protein on the N terminus and was purified to near homogeneity by using amylose affinity chromatography. The purified enzyme was found to reduce a number of long-chain aldehydes to the corresponding alcohols coupled to the oxidation of NADPH. The highest specific activity was observed for the reduction of decanal (85 nmol decanal reduced/min/mg). Short-chain and aromatic aldehydes were not substrates. The enzyme showed no detectable catalysis of the reverse reaction, the oxidation of decanol by NADP+. The mechanism of the enzyme was probed with several site-specific chemical probes. The possible uses of this enzyme in the production of wax esters are discussed.


Applied and Environmental Microbiology | 2012

Differences in substrate specificities of five bacterial wax ester synthases.

Brett M. Barney; Bradley D. Wahlen; EmmaLee Garner; Jiashi Wei; Lance C. Seefeldt

ABSTRACT Wax esters are produced in certain bacteria as a potential carbon and energy storage compound. The final enzyme in the biosynthetic pathway responsible for wax ester production is the bifunctional wax ester synthase/acyl-coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT), which utilizes a range of fatty alcohols and fatty acyl-CoAs to synthesize the corresponding wax ester. We report here the isolation and substrate range characterization for five WS/DGAT enzymes from four different bacteria: Marinobacter aquaeolei VT8, Acinetobacter baylyi, Rhodococcus jostii RHA1, and Psychrobacter cryohalolentis K5. The results from kinetic studies of isolated enzymes reveal a differential activity based on the order of substrate addition and reveal subtle differences between the substrate selectivity of the different enzymes. These in vitro results are compared to the wax ester and triacylglyceride product profiles obtained from each organism grown under neutral lipid accumulating conditions, providing potential insights into the role that the WS/DGAT enzyme plays in determining the final wax ester products that are produced under conditions of nutrient stress in each of these bacteria. Further, the analysis revealed that one enzyme in particular from M. aquaeolei VT8 showed the greatest potential for future study based on rapid purification and significantly higher activity than was found for the other isolated WS/DGAT enzymes. The results provide a framework to test prospective differences between these enzymes for potential biotechnological applications such as high-value petrochemicals and biofuel production.


Proceedings of the National Academy of Sciences of the United States of America | 2006

A methyldiazene (HN N CH3)-derived species bound to the nitrogenase active-site FeMo cofactor: Implications for mechanism

Brett M. Barney; Dmitriy Lukoyanov; Tran Chin Yang; Dennis R. Dean; Brian M. Hoffman; Lance C. Seefeldt

Methyldiazene (HNNCH3) isotopomers labeled with 15N at the terminal or internal nitrogens or with 13C or 2H were used as substrates for the nitrogenase α-195Gln-substituted MoFe protein. Freeze quenching under turnover traps an S = ½ state that has been characterized by EPR and 1H-, 15N-, and 13C-electron nuclear double resonance spectroscopies. These studies disclosed the following: (i) a methyldiazene-derived species is bound to the active-site FeMo cofactor; (ii) this species binds through an [-NHx] fragment whose N derives from the methyldiazene terminal N; and (iii) the internal N from methyldiazene probably does not bind to FeMo cofactor. These results constrain possible mechanisms for reduction of methyldiazene. In the Chatt–Schrock mechanism for N2 reduction, H atoms sequentially add to the distal N before N-N bond cleavage (d-mechanism). In a d-mechanism for methyldiazene reduction, a bound [-NHx] fragment only occurs after reduction by three electrons, which leads to N-N bond cleavage and the release of the first NH3. Thus, the appearance of bound [-NHx] is compatible with the d-mechanism only if it represents a late stage in the reduction process. In contrast are mechanisms where H atoms add alternately to distal and proximal nitrogens before N-N cleavage (a-mechanism) and release of the first NH3 after reduction by five electrons. An [-NHx] fragment would be bound at every stage of methyldiazene reduction in an a-mechanism. Although current information does not rule out the d-mechanism, the a-mechanism is more attractive because proton delivery to substrate has been specifically compromised in α-195Gln-substituted MoFe protein.


Journal of Inorganic Biochemistry | 2010

Insights into substrate binding at FeMo-cofactor in nitrogenase from the structure of an α-70Ile MoFe protein variant

Ranjana Sarma; Brett M. Barney; Stephen Keable; Dennis R. Dean; Lance C. Seefeldt; John W. Peters

The X-ray crystal structure is presented for a nitrogenase MoFe protein where the alpha subunit residue at position 70 (alpha-70(Val)) has been substituted by the amino acid isoleucine (alpha-70(Ile)). Substitution of alpha-70(Val) by alpha-70(Ile) results in a MoFe protein that is hampered in its ability to reduce a range of substrates including acetylene and N(2), yet retains normal proton reduction activity. The 2.3A structure of the alpha-70(Ile) MoFe protein is compared to the alpha-70(Val) wild-type MoFe protein, revealing that the delta methyl group of alpha-70(Val) is positioned over Fe6 within the active site FeMo-cofactor. This work provides strong crystallographic support for the previously proposed model that substrates bind and are reduced at a single 4Fe-4S face of the FeMo-cofactor and that when alpha-70(Val) is substituted by alpha-70(Ile) access of substrates to Fe6 of this face is effectively blocked. Furthermore the detailed examination of the structure provides the basis for understanding the ability to trap and characterize hydrides in the variant, contributing significantly to our understanding of substrate access and substrate reduction at the FeMo-cofactor active site of nitrogenase.


Biochemistry | 2009

Trapping an Intermediate of Dinitrogen (N2) Reduction on Nitrogenase

Brett M. Barney; Dmitriy Lukoyanov; Robert Y. Igarashi; Mikhail Laryukhin; Tran Chin Yang; Dennis R. Dean; Brian M. Hoffman; Lance C. Seefeldt

Nitrogenase reduces dinitrogen (N2) by six electrons and six protons at an active-site metallocluster called FeMo cofactor, to yield two ammonia molecules. Insights into the mechanism of substrate reduction by nitrogenase have come from recent successes in trapping and characterizing intermediates generated during the reduction of protons as well as nitrogenous and alkyne substrates by MoFe proteins with amino acid substitutions. Here, we describe an intermediate generated at a high concentration during reduction of the natural nitrogenase substrate, N2, by wild-type MoFe protein, providing evidence that it contains N2 bound to the active-site FeMo cofactor. When MoFe protein was frozen at 77 K during steady-state turnover with N2, the S = 3/2 EPR signal (g = [4.3, 3.64, 2.00]) arising from the resting state of FeMo cofactor was observed to convert to a rhombic, S = 1/2, signal (g = [2.08, 1.99, 1.97]). The intensity of the N2-dependent EPR signal increased with increasing N2 partial pressure, reaching a maximum intensity of approximately 20% of that of the original FeMo cofactor signal at > or = 0.2 atm N2. An almost complete loss of resting FeMo cofactor signal in this sample implies that the remainder of the enzyme has been reduced to an EPR-silent intermediate state. The N2-dependent EPR signal intensity also varied with the ratio of Fe protein to MoFe protein (electron flux through nitrogenase), with the maximum signal intensity observed with a ratio of 2:1 (1:1 Fe protein:FeMo cofactor) or higher. The pH optimum for the signal was 7.1. The N2-dependent EPR signal intensity exhibited a linear dependence on the square root of the EPR microwave power in contrast to the nonlinear response of signal intensity observed for hydrazine-, diazene-, and methyldiazene-trapped states. 15N ENDOR spectroscopic analysis of MoFe protein captured during turnover with 15N2 revealed a 15N nuclear spin coupled to the FeMo cofactor with a hyperfine tensor A = [0.9, 1.4, 0.45] MHz establishing that an N2-derived species was trapped on the FeMo cofactor. The observation of a single type of 15N-coupled nucleus from the field dependence, along with the absence of an associated exchangeable 1H ENDOR signal, is consistent with an N2 molecule bound end-on to the FeMo cofactor.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Unification of reaction pathway and kinetic scheme for N2 reduction catalyzed by nitrogenase

Dmitriy Lukoyanov; Zhi Yong Yang; Brett M. Barney; Dennis R. Dean; Lance C. Seefeldt; Brian M. Hoffman

Nitrogenase catalyzes the reduction of N2 and protons to yield two NH3 and one H2. Substrate binding occurs at a complex organo-metallocluster called FeMo-cofactor (FeMo-co). Each catalytic cycle involves the sequential delivery of eight electrons/protons to this cluster, and this process has been framed within a kinetic scheme developed by Lowe and Thorneley. Rapid freezing of a modified nitrogenase under turnover conditions using diazene, methyldiazene (HN = N-CH3), or hydrazine as substrate recently was shown to trap a common intermediate, designated I. It was further concluded that the two N-atoms of N2 are hydrogenated alternately (“Alternating” (A) pathway). In the present work, Q-band CW EPR and 95Mo ESEEM spectroscopy reveal such samples also contain a common intermediate with FeMo-co in an integer-spin state having a ground-state “non-Kramers” doublet. This species, designated H, has been characterized by ESEEM spectroscopy using a combination of 14,15N isotopologs plus 1,2H isotopologs of methyldiazene. It is concluded that: H has NH2 bound to FeMo-co and corresponds to the penultimate intermediate of N2 hydrogenation, the state formed after the accumulation of seven electrons/protons and the release of the first NH3; I corresponds to the final intermediate in N2 reduction, the state formed after accumulation of eight electrons/protons, with NH3 still bound to FeMo-co prior to release and regeneration of resting-state FeMo-co. A proposed unification of the Lowe-Thorneley kinetic model with the “prompt” alternating reaction pathway represents a draft mechanism for N2 reduction by nitrogenase.

Collaboration


Dive into the Brett M. Barney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Y. Igarashi

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge