Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia C. Dos Santos is active.

Publication


Featured researches published by Patricia C. Dos Santos.


Journal of Bacteriology | 2009

Genome Sequence of Azotobacter vinelandii, an Obligate Aerobe Specialized To Support Diverse Anaerobic Metabolic Processes

João C. Setubal; Patricia C. Dos Santos; Barry S. Goldman; Helga Ertesvåg; Guadelupe Espin; Luis M. Rubio; Svein Valla; Nalvo F. Almeida; Divya Balasubramanian; Lindsey Cromes; Leonardo Curatti; Zijin Du; Eric Godsy; Brad Goodner; Kaitlyn Hellner-Burris; Jose A. Hernandez; Katherine Houmiel; Juan Imperial; Christina Kennedy; Timothy J. Larson; Phil Latreille; Lauren S. Ligon; Jing Lu; Mali Mærk; Nancy M. Miller; Stacie Norton; Ina P. O'Carroll; Ian T. Paulsen; Estella C. Raulfs; Rebecca Roemer

Azotobacter vinelandii is a soil bacterium related to the Pseudomonas genus that fixes nitrogen under aerobic conditions while simultaneously protecting nitrogenase from oxygen damage. In response to carbon availability, this organism undergoes a simple differentiation process to form cysts that are resistant to drought and other physical and chemical agents. Here we report the complete genome sequence of A. vinelandii DJ, which has a single circular genome of 5,365,318 bp. In order to reconcile an obligate aerobic lifestyle with exquisitely oxygen-sensitive processes, A. vinelandii is specialized in terms of its complement of respiratory proteins. It is able to produce alginate, a polymer that further protects the organism from excess exogenous oxygen, and it has multiple duplications of alginate modification genes, which may alter alginate composition in response to oxygen availability. The genome analysis identified the chromosomal locations of the genes coding for the three known oxygen-sensitive nitrogenases, as well as genes coding for other oxygen-sensitive enzymes, such as carbon monoxide dehydrogenase and formate dehydrogenase. These findings offer new prospects for the wider application of A. vinelandii as a host for the production and characterization of oxygen-sensitive proteins.


BMC Genomics | 2012

Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes

Patricia C. Dos Santos; Zhong Fang; Steven W Mason; João C. Setubal; Ray Dixon

BackgroundThe metabolic capacity for nitrogen fixation is known to be present in several prokaryotic species scattered across taxonomic groups. Experimental detection of nitrogen fixation in microbes requires species-specific conditions, making it difficult to obtain a comprehensive census of this trait. The recent and rapid increase in the availability of microbial genome sequences affords novel opportunities to re-examine the occurrence and distribution of nitrogen fixation genes. The current practice for computational prediction of nitrogen fixation is to use the presence of the nifH and/or nifD genes.ResultsBased on a careful comparison of the repertoire of nitrogen fixation genes in known diazotroph species we propose a new criterion for computational prediction of nitrogen fixation: the presence of a minimum set of six genes coding for structural and biosynthetic components, namely NifHDK and NifENB. Using this criterion, we conducted a comprehensive search in fully sequenced genomes and identified 149 diazotrophic species, including 82 known diazotrophs and 67 species not known to fix nitrogen. The taxonomic distribution of nitrogen fixation in Archaea was limited to the Euryarchaeota phylum; within the Bacteria domain we predict that nitrogen fixation occurs in 13 different phyla. Of these, seven phyla had not hitherto been known to contain species capable of nitrogen fixation. Our analyses also identified protein sequences that are similar to nitrogenase in organisms that do not meet the minimum-gene-set criteria. The existence of nitrogenase-like proteins lacking conserved co-factor ligands in both diazotrophs and non-diazotrophs suggests their potential for performing other, as yet unidentified, metabolic functions.ConclusionsOur predictions expand the known phylogenetic diversity of nitrogen fixation, and suggest that this trait may be much more common in nature than it is currently thought. The diverse phylogenetic distribution of nitrogenase-like proteins indicates potential new roles for anciently duplicated and divergent members of this group of enzymes.


Proceedings of the National Academy of Sciences of the United States of America | 2008

In vivo iron–sulfur cluster formation

Estella C. Raulfs; Ina P. O'Carroll; Patricia C. Dos Santos; Mihaela-Carmen Unciuleac; Dennis R. Dean

It has been proposed that iron–sulfur [Fe-S] clusters destined for the maturation of [Fe-S] proteins can be preassembled on a molecular scaffold designated IscU. In the present article, it is shown that production of the intact Azotobacter vinelandii [Fe-S] cluster biosynthetic machinery at levels exceeding the amount required for cellular maturation of [Fe-S] proteins results in the accumulation of: (i) apo-IscU, (ii) an oxygen-labile [2Fe-2S] cluster-loaded form of IscU, and (iii) IscU complexed with the S-delivery protein, IscS. It is suggested that these species represent different stages of the [Fe-S] cluster assembly process. Substitution of the IscU Asp39 residue by Ala results in the in vivo trapping of a stoichiometric, noncovalent, nondissociating IscU–IscS complex that contains an oxygen-resistant [Fe-S] species. In aggregate, these results validate the scaffold hypothesis for [Fe-S] cluster assembly and indicate that in vivo [Fe-S] cluster formation is a dynamic process that involves the reversible interaction of IscU and IscS.


Journal of Biological Chemistry | 2004

Substrate interaction at an iron-sulfur face of the FeMo-cofactor during nitrogenase catalysis

Brett M. Barney; Robert Y. Igarashi; Patricia C. Dos Santos; Dennis R. Dean; Lance C. Seefeldt

Nitrogenase catalyzes biological dinitrogen fixation, the reduction of N2 to 2NH3. Recently, the binding site for a non-physiological alkyne substrate (propargyl alcohol, HC≡C-CH2OH) was localized to a specific Fe-S face of the FeMo-cofactor approached by the MoFe protein amino acid α-70Val. Here we provide evidence to indicate that the smaller alkyne substrate acetylene (HC≡CH), the physiological substrate dinitrogen, and its semi-reduced form hydrazine (H2N-NH2) interact with the same Fe-S face of the FeMo-cofactor. Hydrazine is a relatively poor substrate for the wild-type (α-70Val) MoFe protein. Substitution of the α-70Val residue by an amino acid having a smaller side chain (alanine) dramatically enhanced hydrazine reduction activity. Conversely, substitution of α-70Val by an amino acid having a larger side chain (isoleucine) significantly lowered the capacity of the MoFe protein to reduce dinitrogen, hydrazine, or acetylene.


Journal of Biological Chemistry | 2008

A Proposed Role for the Azotobacter vinelandii NfuA Protein as an Intermediate Iron-Sulfur Cluster Carrier

Sibali Bandyopadhyay; Sunil G. Naik; Ina P. O'Carroll; B H Huynh; Dennis R. Dean; Michael K. Johnson; Patricia C. Dos Santos

Iron-sulfur clusters ([Fe-S] clusters) are assembled on molecular scaffolds and subsequently used for maturation of proteins that require [Fe-S] clusters for their functions. Previous studies have shown that Azotobacter vinelandii produces at least two [Fe-S] cluster assembly scaffolds: NifU, required for the maturation of nitrogenase, and IscU, required for the general maturation of other [Fe-S] proteins. A. vinelandii also encodes a protein designated NfuA, which shares amino acid sequence similarity with the C-terminal region of NifU. The activity of aconitase, a [4Fe-4S] cluster-containing enzyme, is markedly diminished in a strain containing an inactivated nfuA gene. This inactivation also results in a null-growth phenotype when the strain is cultivated under elevated oxygen concentrations. NifU has a limited ability to serve the function of NfuA, as its expression at high levels corrects the defect of the nfuA-disrupted strain. Spectroscopic and analytical studies indicate that one [4Fe-4S] cluster can be assembled in vitro within a dimeric form of NfuA. The resultant [4Fe-4S] cluster-loaded form of NfuA is competent for rapid in vitro activation of apo-aconitase. Based on these results a model is proposed where NfuA could represent a class of intermediate [Fe-S] cluster carriers involved in [Fe-S] protein maturation.


Infection and Immunity | 2003

Mammalian Transforming Growth Factor β1 Activated after Ingestion by Anopheles stephensi Modulates Mosquito Immunity

Shirley Luckhart; Andrea L. Crampton; Ruben Zamora; Matthew J. Lieber; Patricia C. Dos Santos; Tina M.L. Peterson; Nicole Emmith; Junghwa Lim; David A. Wink; Yoram Vodovotz

ABSTRACT During the process of bloodfeeding by Anopheles stephensi, mammalian latent transforming growth factor β1 (TGF-β1) is ingested and activated rapidly in the mosquito midgut. Activation may involve heme and nitric oxide (NO), agents released in the midgut during blood digestion and catalysis of l-arginine oxidation by A. stephensi NO synthase (AsNOS). Active TGF-β1 persists in the mosquito midgut to extended times postingestion and is recognized by mosquito cells as a cytokine. In a manner analogous to the regulation of vertebrate inducible NO synthase and malaria parasite (Plasmodium) infection in mammals by TGF-β1, TGF-β1 regulates AsNOS expression and Plasmodium development in A. stephensi. Together, these observations indicate that, through conserved immunological cross talk, mammalian and mosquito immune systems interface with each other to influence the cycle of Plasmodium development.


Journal of Bacteriology | 2007

Controlled Expression of nif and isc Iron-Sulfur Protein Maturation Components Reveals Target Specificity and Limited Functional Replacement between the Two Systems

Patricia C. Dos Santos; Deborah C. Johnson; Brook E. Ragle; Mihaela-Carmen Unciuleac; Dennis R. Dean

The nitrogen-fixing organism Azotobacter vinelandii contains at least two systems that catalyze formation of [Fe-S] clusters. One of these systems is encoded by nif genes, whose products supply [Fe-S] clusters required for maturation of nitrogenase. The other system is encoded by isc genes, whose products are required for maturation of [Fe-S] proteins that participate in general metabolic processes. The two systems are similar in that they include an enzyme for the mobilization of sulfur (NifS or IscS) and an assembly scaffold (NifU or IscU) upon which [Fe-S] clusters are formed. Normal cellular levels of the Nif system, which supplies [Fe-S] clusters for the maturation of nitrogenase, cannot also supply [Fe-S] clusters for the maturation of other cellular [Fe-S] proteins. Conversely, when produced at the normal physiological levels, the Isc system cannot supply [Fe-S] clusters for the maturation of nitrogenase. In the present work we found that such target specificity for IscU can be overcome by elevated production of NifU. We also found that NifU, when expressed at normal levels, is able to partially replace the function of IscU if cells are cultured under low-oxygen-availability conditions. In contrast to the situation with IscU, we could not establish conditions in which the function of IscS could be replaced by NifS. We also found that elevated expression of the Isc components, as a result of deletion of the regulatory iscR gene, improved the capacity for nitrogen-fixing growth of strains deficient in either NifU or NifS.


Biochemistry | 2010

Characterization of the N-acetyl-α-D-glucosaminyl l-malate synthase and deacetylase functions for bacillithiol biosynthesis in Bacillus anthracis .

Derek Parsonage; Gerald L. Newton; Robert C. Holder; Bret D. Wallace; Carleitta Paige; Chris J. Hamilton; Patricia C. Dos Santos; Matthew R. Redinbo; Sean D. Reid; Al Claiborne

Bacillithiol (Cys-GlcN-malate, BSH) has recently been identified as a novel low-molecular weight thiol in Bacillus anthracis, Staphylococcus aureus, and several other Gram-positive bacteria lacking glutathione and mycothiol. We have now characterized the first two enzymes for the BSH biosynthetic pathway in B. anthracis, which combine to produce α-d-glucosaminyl l-malate (GlcN-malate) from UDP-GlcNAc and l-malate. The structure of the GlcNAc-malate intermediate has been determined, as have the kinetic parameters for the BaBshA glycosyltransferase (→GlcNAc-malate) and the BaBshB deacetylase (→GlcN-malate). BSH is one of only two natural products reported to contain a malyl glycoside, and the crystal structure of the BaBshA-UDP-malate ternary complex, determined in this work at 3.3 Å resolution, identifies several active-site interactions important for the specific recognition of l-malate, but not other α-hydroxy acids, as the acceptor substrate. In sharp contrast to the structures reported for the GlcNAc-1-d-myo-inositol-3-phosphate synthase (MshA) apo and ternary complex forms, there is no major conformational change observed in the structures of the corresponding BaBshA forms. A mutant strain of B. anthracis deficient in the BshA glycosyltransferase fails to produce BSH, as predicted. This B. anthracis bshA locus (BA1558) has been identified in a transposon-site hybridization study as required for growth, sporulation, or germination [Day, W. A., Jr., Rasmussen, S. L., Carpenter, B. M., Peterson, S. N., and Friedlander, A. M. (2007) J. Bacteriol. 189, 3296-3301], suggesting that the biosynthesis of BSH could represent a target for the development of novel antimicrobials with broad-spectrum activity against Gram-positive pathogens like B. anthracis. The metabolites that function in thiol redox buffering and homeostasis in Bacillus are not well understood, and we present a composite picture based on this and other recent work.


Journal of Bacteriology | 2011

Transcriptional Profiling of Nitrogen Fixation in Azotobacter vinelandii

Trinity L. Hamilton; Marcus Ludwig; Ray Dixon; Eric S. Boyd; Patricia C. Dos Santos; João C. Setubal; Donald A. Bryant; Dennis R. Dean; John W. Peters

Most biological nitrogen (N(2)) fixation results from the activity of a molybdenum-dependent nitrogenase, a complex iron-sulfur enzyme found associated with a diversity of bacteria and some methanogenic archaea. Azotobacter vinelandii, an obligate aerobe, fixes nitrogen via the oxygen-sensitive Mo nitrogenase but is also able to fix nitrogen through the activities of genetically distinct alternative forms of nitrogenase designated the Vnf and Anf systems when Mo is limiting. The Vnf system appears to replace Mo with V, and the Anf system is thought to contain Fe as the only transition metal within the respective active site metallocofactors. Prior genetic analyses suggest that a number of nif-encoded components are involved in the Vnf and Anf systems. Genome-wide transcription profiling of A. vinelandii cultured under nitrogen-fixing conditions under various metal amendments (e.g., Mo or V) revealed the discrete complement of genes associated with each nitrogenase system and the extent of cross talk between the systems. In addition, changes in transcript levels of genes not directly involved in N(2) fixation provided insight into the integration of central metabolic processes and the oxygen-sensitive process of N(2) fixation in this obligate aerobe. The results underscored significant differences between Mo-dependent and Mo-independent diazotrophic growth that highlight the significant advantages of diazotrophic growth in the presence of Mo.


Biochemistry | 2010

Kinetic analysis of the bisubstrate cysteine desulfurase SufS from Bacillus subtilis.

Bruna P. Selbach; Emily Earles; Patricia C. Dos Santos

Cysteine is the major sulfur donor for thio cofactors in bacterial and eukaryotic systems. The first step in sulfur mobilization involves a PLP-dependent enzymatic mechanism. During catalysis, free cysteine is converted into alanine with the concomitant formation of a persulfide bond with the catalytic cysteine residue, thus forming a covalent enzyme intermediate. Cysteine desulfurases in their persulfurated forms serve as donors at the intersection of various cellular sulfur-requiring pathways. Most Gram-positive bacteria, including Bacillus subtilis, contain a cysteine desulfurase gene sufS located adjacent to the gene encoding the proposed Fe-S cluster scaffold SufU. In this work, we identified the participation of SufU as a substrate in the SufS catalytic mechanism. Development of a sensitive method for detection of alanine formed in the SufS reaction enabled the identification of its associated mechanistic features. Steady-state kinetic analysis of alanine formation provided evidence of a double-displacement mechanism (ping-pong) of the cysteine:SufU sulfurtransferase reaction catalyzed by SufS. Results from site-directed mutagenesis of the catalytic cysteine (SufS(C361A)) and iodoacetamide alkylation of SufU support the occurrence of persulfide sulfur transfer steps in the mechanism of SufS.

Collaboration


Dive into the Patricia C. Dos Santos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Y. Igarashi

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong-In Lee

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Brian M. Hoffman

University of Illinois at Urbana–Champaign

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge