Brett S. Carver
Memorial Sloan Kettering Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brett S. Carver.
Cancer Cell | 2010
Barry S. Taylor; Nikolaus Schultz; Haley Hieronymus; Anuradha Gopalan; Yonghong Xiao; Brett S. Carver; Vivek K. Arora; Poorvi Kaushik; Ethan Cerami; Boris Reva; Yevgeniy Antipin; Nicholas Mitsiades; Thomas Landers; Igor Dolgalev; John Major; Manda Wilson; Nicholas D. Socci; Alex E. Lash; Adriana Heguy; James A. Eastham; Howard I. Scher; Victor E. Reuter; Peter T. Scardino; Chris Sander; Charles L. Sawyers; William L. Gerald
Annotation of prostate cancer genomes provides a foundation for discoveries that can impact disease understanding and treatment. Concordant assessment of DNA copy number, mRNA expression, and focused exon resequencing in 218 prostate cancer tumors identified the nuclear receptor coactivator NCOA2 as an oncogene in approximately 11% of tumors. Additionally, the androgen-driven TMPRSS2-ERG fusion was associated with a previously unrecognized, prostate-specific deletion at chromosome 3p14 that implicates FOXP1, RYBP, and SHQ1 as potential cooperative tumor suppressors. DNA copy-number data from primary tumors revealed that copy-number alterations robustly define clusters of low- and high-risk disease beyond that achieved by Gleason score. The genomic and clinical outcome data from these patients are now made available as a public resource.
Nature | 2010
Laura Poliseno; Leonardo Salmena; Jiangwen Zhang; Brett S. Carver; William J. Haveman; Pier Paolo Pandolfi
The canonical role of messenger RNA (mRNA) is to deliver protein-coding information to sites of protein synthesis. However, given that microRNAs bind to RNAs, we hypothesized that RNAs could possess a regulatory role that relies on their ability to compete for microRNA binding, independently of their protein-coding function. As a model for the protein-coding-independent role of RNAs, we describe the functional relationship between the mRNAs produced by the PTEN tumour suppressor gene and its pseudogene PTENP1 and the critical consequences of this interaction. We find that PTENP1 is biologically active as it can regulate cellular levels of PTEN and exert a growth-suppressive role. We also show that the PTENP1 locus is selectively lost in human cancer. We extended our analysis to other cancer-related genes that possess pseudogenes, such as oncogenic KRAS. We also demonstrate that the transcripts of protein-coding genes such as PTEN are biologically active. These findings attribute a novel biological role to expressed pseudogenes, as they can regulate coding gene expression, and reveal a non-coding function for mRNAs.
Cancer Cell | 2011
Brett S. Carver; Caren Chapinski; John Wongvipat; Haley Hieronymus; Yu Chen; Sarat Chandarlapaty; Vivek K. Arora; Carl Le; Jason A. Koutcher; Howard I. Scher; Peter T. Scardino; Neal Rosen; Charles L. Sawyers
Prostate cancer is characterized by its dependence on androgen receptor (AR) and frequent activation of PI3K signaling. We find that AR transcriptional output is decreased in human and murine tumors with PTEN deletion and that PI3K pathway inhibition activates AR signaling by relieving feedback inhibition of HER kinases. Similarly, AR inhibition activates AKT signaling by reducing levels of the AKT phosphatase PHLPP. Thus, these two oncogenic pathways cross-regulate each other by reciprocal feedback. Inhibition of one activates the other, thereby maintaining tumor cell survival. However, combined pharmacologic inhibition of PI3K and AR signaling caused near-complete prostate cancer regressions in a Pten-deficient murine prostate cancer model and in human prostate cancer xenografts, indicating that both pathways coordinately support survival.
Cell | 2007
Lloyd C. Trotman; Xinjiang Wang; Andrea Alimonti; Zhenbang Chen; Julie Teruya-Feldstein; Haijuan Yang; Nikola P. Pavletich; Brett S. Carver; Carlos Cordon-Cardo; Hediye Erdjument-Bromage; Paul Tempst; Sung Gil Chi; Hyo Jong Kim; Tom Misteli; Xuejun Jiang; Pier Paolo Pandolfi
The PTEN tumor suppressor is frequently affected in cancer cells, and inherited PTEN mutation causes cancer-susceptibility conditions such as Cowden syndrome. PTEN acts as a plasma-membrane lipid-phosphatase antagonizing the phosphoinositide 3-kinase/AKT cell survival pathway. However, PTEN is also found in cell nuclei, but mechanism, function, and relevance of nuclear localization remain unclear. We show that nuclear PTEN is essential for tumor suppression and that PTEN nuclear import is mediated by its monoubiquitination. A lysine mutant of PTEN, K289E associated with Cowden syndrome, retains catalytic activity but fails to accumulate in nuclei of patient tissue due to an import defect. We identify this and another lysine residue as major monoubiquitination sites essential for PTEN import. While nuclear PTEN is stable, polyubiquitination leads to its degradation in the cytoplasm. Thus, we identify cancer-associated mutations of PTEN that target its posttranslational modification and demonstrate how a discrete molecular mechanism dictates tumor progression by differentiating between degradation and protection of PTEN.
Nature Genetics | 2009
Brett S. Carver; Jennifer Tran; Anuradha Gopalan; Zhenbang Chen; Safa Shaikh; Arkaitz Carracedo; Andrea Alimonti; Caterina Nardella; Shohreh Varmeh; Peter T. Scardino; Carlos Cordon-Cardo; William L. Gerald; Pier Paolo Pandolfi
Chromosomal translocations involving the ERG locus are frequent events in human prostate cancer pathogenesis; however, the biological role of aberrant ERG expression is controversial. Here we show that aberrant expression of ERG is a progression event in prostate tumorigenesis. We find that prostate cancer specimens containing the TMPRSS2-ERG rearrangement are significantly enriched for loss of the tumor suppressor PTEN. In concordance with these findings, transgenic overexpression of ERG in mouse prostate tissue promotes marked acceleration and progression of high-grade prostatic intraepithelial neoplasia (HGPIN) to prostatic adenocarcinoma in a Pten heterozygous background. In vitro overexpression of ERG promotes cell migration, a property necessary for tumorigenesis, without affecting proliferation. ADAMTS1 and CXCR4, two candidate genes strongly associated with cell migration, were upregulated in the presence of ERG overexpression. Thus, ERG has a distinct role in prostate cancer progression and cooperates with PTEN haploinsufficiency to promote progression of HGPIN to invasive adenocarcinoma.
Nature Genetics | 2009
Jennifer C King; Jin Xu; John Wongvipat; Haley Hieronymus; Brett S. Carver; David H Leung; Barry S. Taylor; Chris Sander; Robert D. Cardiff; Suzana S. Couto; William L. Gerald; Charles L. Sawyers
The TMPRSS2-ERG fusion, present in approximately 50% of prostate cancers, is less common in prostatic intraepithelial neoplasia (PIN), raising questions about whether TMPRSS2-ERG contributes to disease initiation. We identified the translational start site of a common TMPRSS2-ERG fusion and showed that transgenic TMPRSS2-ERG mice develop PIN, but only in the context of PI3-kinase pathway activation. TMPRSS2-ERG–positive human tumors are also enriched for PTEN loss, suggesting cooperation in prostate tumorigenesis.
Nature Medicine | 2013
Yu Chen; Ping Chi; Shira Rockowitz; Phillip J. Iaquinta; Tambudzai Shamu; Shipra Shukla; Dong Gao; Inna Sirota; Brett S. Carver; John Wongvipat; Howard I. Scher; Deyou Zheng; Charles L. Sawyers
Studies of ETS-mediated prostate oncogenesis have been hampered by a lack of suitable experimental systems. Here we describe a new conditional mouse model that shows robust, homogenous ERG expression throughout the prostate. When combined with homozygous Pten loss, the mice developed accelerated, highly penetrant invasive prostate cancer. In mouse prostate tissue, ERG markedly increased androgen receptor (AR) binding. Robust ERG-mediated transcriptional changes, observed only in the setting of Pten loss, included the restoration of AR transcriptional output and upregulation of genes involved in cell death, migration, inflammation and angiogenesis. Similarly, ETS variant 1 (ETV1) positively regulated the AR cistrome and transcriptional output in ETV1-translocated, PTEN-deficient human prostate cancer cells. In two large clinical cohorts, expression of ERG and ETV1 correlated with higher AR transcriptional output in PTEN-deficient prostate cancer specimens. We propose that ETS factors cause prostate-specific transformation by altering the AR cistrome, priming the prostate epithelium to respond to aberrant upstream signals such as PTEN loss.
Cancer Discovery | 2013
William R. Polkinghorn; Joel S. Parker; Man X. Lee; Elizabeth M. Kass; Daniel E. Spratt; Phillip J. Iaquinta; Vivek K. Arora; Wei Feng Yen; Ling Cai; Deyou Zheng; Brett S. Carver; Yu Chen; Philip A. Watson; Neel Shah; Sho Fujisawa; Alexander G. Goglia; Anuradha Gopalan; Haley Hieronymus; John Wongvipat; Peter T. Scardino; Michael J. Zelefsky; Maria Jasin; Jayanta Chaudhuri; Simon N. Powell; Charles L. Sawyers
UNLABELLED We demonstrate that the androgen receptor (AR) regulates a transcriptional program of DNA repair genes that promotes prostate cancer radioresistance, providing a potential mechanism by which androgen deprivation therapy synergizes with ionizing radiation. Using a model of castration-resistant prostate cancer, we show that second-generation antiandrogen therapy results in downregulation of DNA repair genes. Next, we demonstrate that primary prostate cancers display a significant spectrum of AR transcriptional output, which correlates with expression of a set of DNA repair genes. Using RNA-seq and ChIP-seq, we define which of these DNA repair genes are both induced by androgen and represent direct AR targets. We establish that prostate cancer cells treated with ionizing radiation plus androgen demonstrate enhanced DNA repair and decreased DNA damage and furthermore that antiandrogen treatment causes increased DNA damage and decreased clonogenic survival. Finally, we demonstrate that antiandrogen treatment results in decreased classical nonhomologous end-joining. SIGNIFICANCE We demonstrate that the AR regulates a network of DNA repair genes, providing a potential mechanism by which androgen deprivation synergizes with radiotherapy for prostate cancer.
The Journal of Urology | 2009
Andrew J. Stephenson; David P. Wood; Michael W. Kattan; Eric A. Klein; Peter T. Scardino; James A. Eastham; Brett S. Carver
PURPOSE Positive surgical margins increase the risk of biochemical recurrence after radical prostatectomy by 2 to 4-fold. The risk of biochemical recurrence may be influenced by the anatomical location and extent of positive surgical margins. In a multicenter study we analyzed the predictive usefulness of several subclassifications of positive surgical margins. MATERIALS AND METHODS The clinical information and followup data of 7,160 patients treated with radical prostatectomy alone at 1 of 3 institutions between 1995 and 2006 were modeled using Cox proportional hazards regression analysis for biochemical recurrence. Positive surgical margins were analyzed as solitary vs multiple, focal vs extensive and apical location vs other. The usefulness of these subclassifications was assessed by the improvement in predictive accuracy of nomograms containing these parameters compared to one in which the surgical margin was modeled simply as positive vs negative. RESULTS The 7-year progression-free probability was 60% in patients with positive surgical margins. A positive surgical margin was significantly associated with biochemical recurrence (HR 2.3, p <0.001) after adjusting for age, prostate specific antigen, pathological Gleason score, pathological stage and year of surgery. An increased risk of biochemical recurrence was associated with multiple vs solitary positive surgical margins (adjusted HR 1.4, p = 0.002) and extensive vs focal positive surgical margins (adjusted HR 1.3, p = 0.004) on multivariable analysis. However, neither parameter improved the predictive accuracy of a nomogram compared to one in which surgical margin status was modeled as positive vs negative (concordance index 0.851 vs 0.850 vs 0.850). CONCLUSIONS The number and extent of positive surgical margin significantly influence the risk of biochemical recurrence after radical prostatectomy. However, the empirical prognostic usefulness of subclassifications of positive surgical margins is limited.
BJUI | 2007
Eric O. Kwon; Brett S. Carver; Mark E. Snyder; Paul Russo
To evaluate the clinical outcome of patients undergoing partial nephrectomy (PN) for renal cortical tumours who had a positive surgical margin (SM), as recent studies have shown that a minimal SM is required to achieve equivalent disease‐free survival (DFS).