Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian Aquila is active.

Publication


Featured researches published by Brian Aquila.


Journal of the American Chemical Society | 2016

Photoredox Mediated Nickel Catalyzed Cross-Coupling of Thiols With Aryl and Heteroaryl Iodides via Thiyl Radicals

Martins S. Oderinde; Mathieu Frenette; Daniel W. Robbins; Brian Aquila; Jeffrey W. Johannes

Ni-catalyzed cross-couplings of aryl, benzyl, and alkyl thiols with aryl and heteroaryl iodides were accomplished in the presence of an Ir-photoredox catalyst. Highly chemoselective C-S cross-coupling was achieved versus competitive C-O and C-N cross-couplings. This C-S cross-coupling method exhibits remarkable functional group tolerance, and the reactions can be carried out in the presence of molecular oxygen. Mechanistic investigations indicated that the reaction proceeded through transient Ni(I)-species and thiyl radicals. Distinct from nickel-catalyzed cross-coupling reactions involving carbon-centered radicals, control experiments and spectroscopic studies suggest that this C-S cross-coupling reaction does not involve a Ni(0)-species.


Nature Chemical Biology | 2016

Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain

Gizem Akçay; Matthew A. Belmonte; Brian Aquila; Claudio Chuaqui; Alexander Hird; Michelle L. Lamb; Philip Rawlins; Nancy Su; Sharon Tentarelli; Neil Grimster; Qibin Su

Targeted covalent inhibition of disease-associated proteins has become a powerful methodology in the field of drug discovery, leading to the approval of new therapeutics. Nevertheless, current approaches are often limited owing to their reliance on a cysteine residue to generate the covalent linkage. Here we used aryl boronic acid carbonyl warheads to covalently target a noncatalytic lysine side chain, and generated to our knowledge the first reversible covalent inhibitors for Mcl-1, a protein-protein interaction (PPI) target that has proven difficult to inhibit via traditional medicinal chemistry strategies. These covalent binders exhibited improved potency in comparison to noncovalent congeners, as demonstrated in biochemical and cell-based assays. We identified Lys234 as the residue involved in covalent modification, via point mutation. The covalent binders discovered in this study will serve as useful starting points for the development of Mcl-1 therapeutics and probes to interrogate Mcl-1-dependent biological phenomena.


Journal of Organic Chemistry | 2015

Effects of Molecular Oxygen, Solvent, and Light on Iridium-Photoredox/Nickel Dual-Catalyzed Cross-Coupling Reactions

Martins S. Oderinde; Adrian Varela-Alvarez; Brian Aquila; Daniel W. Robbins; Jeffrey W. Johannes

In order to achieve reproducibility during iridium-photoredox and nickel dual-catalyzed sp(3)-sp(2) carbon-carbon bond-forming reactions, we investigated the role that molecular oxygen (O2), solvent and light-source (CF lamp or blue LED) play in a variety of Ir-photoredox mediated transformations. The presence of O2 was discovered to be important for catalyst activation when air-stable Ni(II) precatalysts were used in DMF under CF lamp irradiation; however, O2 was not required for catalysis when conducted with Ni(COD)2 in the same reaction system. O2 is believed to promote rapid reduction of the Ni(II) precatalyst by Ir(II) to Ni(0). In addition to O2, the effects that solvent and light-source have on the dual-catalyzed decarboxylative cross-coupling reactions will be discussed. These findings have enabled us to develop a more robust dual-catalyzed decarboxylative cross-coupling protocol.


Journal of Medicinal Chemistry | 2011

Discovery of (+)-N-(3-aminopropyl)-N-[1-(5-benzyl-3-methyl-4-oxo-[1,2]thiazolo[5,4-d]pyrimidin-6-yl)-2-methylpropyl]-4-methylbenzamide (AZD4877), a kinesin spindle protein inhibitor and potential anticancer agent.

Maria-Elena Theoclitou; Brian Aquila; Michael Howard Block; Patrick Brassil; Lillian Castriotta; Erin Code; Mike Collins; Audrey Davies; Tracy L. Deegan; Jayachandran Ezhuthachan; Sandra Ann Filla; Ellen Freed; Haiqing Hu; Dennis Huszar; Muthusamy Jayaraman; Deborah Lawson; Paula Lewis; Murali Vp Nadella; Vibha Oza; Maniyan Padmanilayam; Timothy Pontz; Lucienne Ronco; Daniel John Russell; David Whitston; Xiaolan Zheng

Structure-activity relationship analysis identified (+)-N-(3-aminopropyl)-N-[1-(5-benzyl-3-methyl-4-oxo-[1,2]thiazolo[5,4-d]pyrimidin-6-yl)-2-methylpropyl]-4-methylbenzamide (AZD4877), from a series of novel kinesin spindle protein (KSP) inhibitors, as exhibiting both excellent biochemical potency and pharmaceutical properties suitable for clinical development. The selected compound arrested cells in mitosis leading to the formation of the monopolar spindle phenotype characteristic of KSP inhibition and induction of cellular death. A favorable pharmacokinetic profile and notable in vivo efficacy supported the selection of this compound as a clinical candidate for the treatment of cancer.


Angewandte Chemie | 2016

Highly Chemoselective Iridium Photoredox and Nickel Catalysis for the Cross-Coupling of Primary Aryl Amines with Aryl Halides.

Martins S. Oderinde; Natalie H. Jones; Antoine Juneau; Mathieu Frenette; Brian Aquila; Sharon Tentarelli; Daniel W. Robbins; Jeffrey W. Johannes

A visible-light-promoted iridium photoredox and nickel dual-catalyzed cross-coupling procedure for the formation C-N bonds has been developed. With this method, various aryl amines were chemoselectively cross-coupled with electronically and sterically diverse aryl iodides and bromides to forge the corresponding C-N bonds, which are of high interest to the pharmaceutical industries. Aryl iodides were found to be a more efficient electrophilic coupling partner. The coupling reactions were carried out at room temperature without the rigorous exclusion of molecular oxygen, thus making this newly developed Ir-photoredox/Ni dual-catalyzed procedure very mild and operationally simple.


Journal of Medicinal Chemistry | 2013

Discovery of a Novel Class of Dimeric Smac Mimetics as Potent IAP Antagonists Resulting in a Clinical Candidate for the Treatment of Cancer (AZD5582)

Edward J. Hennessy; Ammar Adam; Brian Aquila; Castriotta Lm; Donald J. Cook; Maureen Hattersley; Alexander Hird; Huntington C; Victor Kamhi; Laing Nm; Danyang Li; Terry MacIntyre; Omer Ca; Oza; Patterson T; Repik G; Michael T. Rooney; Jamal C. Saeh; Li Sha; Melissa Vasbinder; Haiyun Wang; Whitston D

A series of dimeric compounds based on the AVPI motif of Smac were designed and prepared as antagonists of the inhibitor of apoptosis proteins (IAPs). Optimization of cellular potency, physical properties, and pharmacokinetic parameters led to the identification of compound 14 (AZD5582), which binds potently to the BIR3 domains of cIAP1, cIAP2, and XIAP (IC50 = 15, 21, and 15 nM, respectively). This compound causes cIAP1 degradation and induces apoptosis in the MDA-MB-231 breast cancer cell line at subnanomolar concentrations in vitro. When administered intravenously to MDA-MB-231 xenograft-bearing mice, 14 results in cIAP1 degradation and caspase-3 cleavage within tumor cells and causes substantial tumor regressions following two weekly doses of 3.0 mg/kg. Antiproliferative effects are observed with 14 in only a small subset of the over 200 cancer cell lines examined, consistent with other published IAP inhibitors. As a result of its in vitro and in vivo profile, 14 was nominated as a candidate for clinical development.


Journal of Medicinal Chemistry | 2013

Discovery and Optimization of a Novel Series of Potent Mutant B-Raf V600E Selective Kinase Inhibitors.

Melissa Vasbinder; Brian Aquila; Martin Augustin; Huawei Chen; Tony Cheung; Donald J. Cook; Lisa Drew; Benjamin P. Fauber; Steve Glossop; Michael Grondine; Edward J. Hennessy; Jeffrey W. Johannes; Stephen Lee; Paul Lyne; Mario Mörtl; Charles Omer; Sangeetha Palakurthi; Timothy Pontz; Jon Read; Li Sha; Minhui Shen; Stefan Steinbacher; Haixia Wang; Allan Wu; Minwei Ye

B-Raf represents an attractive target for anticancer therapy and the development of small molecule B-Raf inhibitors has delivered new therapies for metastatic melanoma patients. We have discovered a novel class of small molecules that inhibit mutant B-Raf(V600E) kinase activity both in vitro and in vivo. Investigations into the structure-activity relationships of the series are presented along with efforts to improve upon the cellular potency, solubility, and pharmacokinetic profile. Compounds selectively inhibited B-Raf(V600E) in vitro and showed preferential antiproliferative activity in mutant B-Raf(V600E) cell lines and exhibited selectivity in a kinase panel against other kinases. Examples from this series inhibit growth of a B-Raf(V600E) A375 xenograft in vivo at a well-tolerated dose. In addition, aminoquinazolines described herein were shown to display pERK elevation in nonmutant B-Raf cell lines in vitro.


Bioorganic & Medicinal Chemistry Letters | 2008

Pyridyl and thiazolyl bisamide CSF-1R inhibitors for the treatment of cancer.

David Scott; Brian Aquila; Geraldine Bebernitz; Donald J. Cook; Les A. Dakin; Tracy L. Deegan; Maureen Hattersley; Stephanos Ioannidis; Paul Lyne; Charles A. Omer; Minwei Ye; Xiaolan Zheng

The bisamide class of kinase inhibitors was identified as being active against CSF-1R. The synthesis and SAR of pyridyl and thiazolyl bisamides are reported, along with the pharmacokinetic properties and in vivo activity of selected examples.


Bioorganic & Medicinal Chemistry Letters | 2009

Identification of amidoheteroaryls as potent inhibitors of mutant (V600E) B-Raf kinase with in vivo activity.

Paul Lyne; Brian Aquila; Donald J. Cook; Les A. Dakin; Jay Ezhuthachan; Stephanos Ioannidis; Timothy Pontz; Mei Su; Qing Ye; Xiaolan Zheng; Michael Howard Block; Scott Cowen; Tracy L. Deegan; John W. Lee; David Scott; Dominique Custeau; Lisa Drew; Srinivasu Poondru; Minhui Shen; Allan Wu

A series of amidoheteroaryl compounds were designed and synthesized as inhibitors of B-Raf kinase. Several compounds from the series show excellent potency in biochemical, phenotypic and mode of action cellular assays. Potent examples from the series have also demonstrated good plasma exposure following an oral dose in rodents and activity against the Ras-Raf pathway in tumor bearing mice.


Bioorganic & Medicinal Chemistry Letters | 2012

Discovery of aminopiperidine-based Smac mimetics as IAP antagonists.

Edward J. Hennessy; Jamal C. Saeh; Li Sha; Terry MacIntyre; Haiyun Wang; Nicholas A. Larsen; Brian Aquila; Andrew D. Ferguson; Naomi Laing; Charles A. Omer

A series of structurally unique Smac mimetics that act as antagonists of inhibitor of apoptosis proteins (IAPs) has been discovered. While most previously described Smac mimetics contain the proline ring (or a similar cyclic motif) found in Smac, a key feature of the compounds described herein is that this ring has been removed. Despite this, compounds in this series potently bind to cIAP1 and elicit the expected phenotype of cIAP1 inhibition in cancer cells. Marked selectivity for cIAP1 over XIAP is observed for these compounds, which is attributed to a slight difference in the binding groove between the two proteins and the resulting steric interactions with the inhibitors. XIAP binding can be improved by constraining the inhibitor so that these unfavorable steric interactions are minimized.

Collaboration


Dive into the Brian Aquila's collaboration.

Researchain Logo
Decentralizing Knowledge