Michael Howard Block
AstraZeneca
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Howard Block.
Journal of Medicinal Chemistry | 2011
Stephanos Ioannidis; Michelle L. Lamb; Tao Wang; Lynsie Almeida; Michael Howard Block; Audrey Davies; Bo Peng; Mei Su; Hai-Jun Zhang; Ethan Hoffmann; Caroline Rivard; Isabelle Green; Tina Howard; Hannah Pollard; Jon Read; Marat Alimzhanov; Geraldine A. Bebernitz; Kirsten Bell; Minwei Ye; Dennis Huszar; Michael Zinda
The myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis are a heterogeneous but related group of hematological malignancies characterized by clonal expansion of one or more myeloid lineages. The discovery of the Jak2 V617F gain of function mutation highlighted Jak2 as a potential therapeutic target in the MPNs. Herein, we disclose the discovery of a series of pyrazol-3-yl pyrimidin-4-amines and the identification of 9e (AZD1480) as a potent Jak2 inhibitor. 9e inhibits signaling and proliferation of Jak2 V617F cell lines in vitro, demonstrates in vivo efficacy in a TEL-Jak2 model, has excellent physical properties and preclinical pharmacokinetics, and is currently being evaluated in Phase I clinical trials.
Journal of Medicinal Chemistry | 2008
Tao Wang; Michelle L. Lamb; David Scott; Haixia Wang; Michael Howard Block; Paul Lyne; John W. Lee; Audrey Davies; Hai-Jun Zhang; Yanyi Zhu; Fei Gu; Yongxin Han; Bin Wang; Peter Mohr; Robert J. Kaus; John Anthony Josey; Ethan Hoffmann; Ken Thress; Terry MacIntyre; Haiyun Wang; Charles Omer; Dingwei Yu
The design, synthesis and biological evaluation of a series of 4-aminopyrazolylpyrimidines as potent Trk kinase inhibitors is reported. High-throughput screening identified a promising hit in the 4-aminopyrazolylpyrimidine chemotype. Initial optimization of the series led to more potent Trk inhibitors. Further optimization using two strategies resulted in significant improvement of physical properties and led to the discovery of 10z (AZ-23), a potent, orally bioavailable Trk A/B inhibitor. The compound offers the potential to test the hypothesis that modulation of Trk activity will be of benefit in the treatment of cancer and other indications in vivo.
Bioorganic & Medicinal Chemistry Letters | 2012
Les A. Dakin; Michael Howard Block; Huawei Chen; Erin Code; James E. Dowling; Xiaomei Feng; Andrew D. Ferguson; Isabelle Green; Alexander Hird; Tina Howard; Erika K. Keeton; Michelle Lamb; Paul Lyne; Hannah Pollard; Jon Read; Allan Wu; Tao Zhang; Xiaolan Zheng
Novel substituted benzylidene-1,3-thiazolidine-2,4-diones (TZDs) have been identified as potent and highly selective inhibitors of the PIM kinases. The synthesis and SAR of these compounds are described, along with X-ray crystallographic, anti-proliferative, and selectivity data.
Journal of Medicinal Chemistry | 2014
Qibin Su; Stephanos Ioannidis; Claudio Chuaqui; Lynsie Almeida; Marat Alimzhanov; Geraldine A. Bebernitz; Kirsten Bell; Michael Howard Block; Tina Howard; Shan Huang; Dennis Huszar; Jon Read; Caroline Rivard Costa; Jie Shi; Mei Su; Minwei Ye; Michael Zinda
Structure based design, synthesis, and biological evaluation of a novel series of 1-methyl-1H-imidazole, as potent Jak2 inhibitors to modulate the Jak/STAT pathway, are described. Using the C-ring fragment from our first clinical candidate AZD1480 (24), optimization of the series led to the discovery of compound 19a, a potent, orally bioavailable Jak2 inhibitor. Compound 19a displayed a high level of cellular activity in hematopoietic cell lines harboring the V617F mutation and in murine BaF3 TEL-Jak2 cells. Compound 19a demonstrated significant tumor growth inhibition in a UKE-1 xenograft model within a well-tolerated dose range.
Journal of Medicinal Chemistry | 2011
Maria-Elena Theoclitou; Brian Aquila; Michael Howard Block; Patrick Brassil; Lillian Castriotta; Erin Code; Mike Collins; Audrey Davies; Tracy L. Deegan; Jayachandran Ezhuthachan; Sandra Ann Filla; Ellen Freed; Haiqing Hu; Dennis Huszar; Muthusamy Jayaraman; Deborah Lawson; Paula Lewis; Murali Vp Nadella; Vibha Oza; Maniyan Padmanilayam; Timothy Pontz; Lucienne Ronco; Daniel John Russell; David Whitston; Xiaolan Zheng
Structure-activity relationship analysis identified (+)-N-(3-aminopropyl)-N-[1-(5-benzyl-3-methyl-4-oxo-[1,2]thiazolo[5,4-d]pyrimidin-6-yl)-2-methylpropyl]-4-methylbenzamide (AZD4877), from a series of novel kinesin spindle protein (KSP) inhibitors, as exhibiting both excellent biochemical potency and pharmaceutical properties suitable for clinical development. The selected compound arrested cells in mitosis leading to the formation of the monopolar spindle phenotype characteristic of KSP inhibition and induction of cellular death. A favorable pharmacokinetic profile and notable in vivo efficacy supported the selection of this compound as a clinical candidate for the treatment of cancer.
ACS Medicinal Chemistry Letters | 2013
James E. Dowling; Marat Alimzhanov; Larry Bao; Michael Howard Block; Claudio Chuaqui; Emma L. Cooke; Christopher R. Denz; Alex Hird; Shan Huang; Nicholas A. Larsen; Bo Peng; Timothy Pontz; Caroline Rivard-Costa; Jamal C. Saeh; Kumar Thakur; Qing Ye; Tao Zhang; Paul Lyne
In this letter, we describe the design, synthesis, and structure-activity relationship of 5-anilinopyrazolo[1,5-a]pyrimidine inhibitors of CK2 kinase. Property-based optimization of early leads using the 7-oxetan-3-yl amino group led to a series of matched molecular pairs with lower lipophilicity, decreased affinity for human plasma proteins, and reduced binding to the hERG ion channel. Agents in this study were shown to modulate pAKT(S129), a direct substrate of CK2, in vitro and in vivo, and exhibited tumor growth inhibition when administered orally in a murine DLD-1 xenograft.
ACS Medicinal Chemistry Letters | 2012
James E. Dowling; Claudio Chuaqui; Timothy Pontz; Paul Lyne; Nicholas A. Larsen; Michael Howard Block; Huawei Chen; Nancy Su; Allan Wu; Daniel John Russell; Hannah Pollard; John W. Lee; Bo Peng; Kumar Thakur; Qing Ye; Tao Zhang; Patrick Brassil; Vicki Racicot; Larry Bao; Christopher R. Denz; Emma L. Cooke
In this paper we describe a series of 3-cyano-5-aryl-7-aminopyrazolo[1,5-a]pyrimidine hits identified by kinase-focused subset screening as starting points for the structure-based design of conformationally constrained 6-acetamido-indole inhibitors of CK2. The synthesis, SAR, and effects of this novel series on Akt signaling and cell proliferation in vitro are described.
Journal of Medicinal Chemistry | 2014
Bin Yang; Michelle Lamb; Tao Zhang; Edward J. Hennessy; Gurmit Grewal; Li Sha; Mark Zambrowski; Michael Howard Block; James E. Dowling; Nancy Su; Jiaquan Wu; Tracy L. Deegan; Keith Mikule; Wenxian Wang; Rüdiger Kaspera; Claudio Chuaqui; Huawei Chen
KIFC1 (HSET), a member of the kinesin-14 family of motor proteins, plays an essential role in centrosomal bundling in cancer cells, but its function is not required for normal diploid cell division. To explore the potential of KIFC1 as a therapeutic target for human cancers, a series of potent KIFC1 inhibitors featuring a phenylalanine scaffold was developed from hits identified through high-throughput screening (HTS). Optimization of the initial hits combined both design-synthesis-test cycles and an integrated high-throughput synthesis and biochemical screening method. An important aspect of this integrated method was the utilization of DMSO stock solutions of compounds registered in the corporate compound collection as synthetic reactants. Using this method, over 1500 compounds selected for structural diversity were quickly assembled in assay-ready 384-well plates and were directly tested after the necessary dilutions. Our efforts led to the discovery of a potent KIFC1 inhibitor, AZ82, which demonstrated the desired centrosome declustering mode of action in cell studies.
ACS Medicinal Chemistry Letters | 2012
Tao Wang; Michelle L. Lamb; Michael Howard Block; Audrey Davies; Yongxin Han; Ethan Hoffmann; Stephanos Ioannidis; John Anthony Josey; Zhong-Ying Liu; Paul Lyne; Terry MacIntyre; Peter Mohr; Charles Omer; Tove Sjögren; Kenneth S. Thress; Bin Wang; Haiyun Wang; Dingwei Yu; Hai-Jun Zhang
Trk receptor tyrosine kinases have been implicated in cancer and pain. A crystal structure of TrkA with AZ-23 (1a) was obtained, and scaffold hopping resulted in two 5/6-bicyclic series comprising either imidazo[4,5-b]pyridines or purines. Further optimization of these two fusion series led to compounds with subnanomolar potencies against TrkA kinase in cellular assays. Antitumor effects in a TrkA-driven mouse allograft model were demonstrated with compounds 2d and 3a.
Bioorganic & Medicinal Chemistry Letters | 2011
Tao Wang; Stephanos Ioannidis; Lynsie Almeida; Michael Howard Block; Audrey Davies; Michelle Lamb; David Scott; Mei Su; Hai-Jun Zhang; Marat Alimzhanov; Geraldine Bebernitz; Kirsten Bell; Michael Zinda
Synthesis and biological evaluation of a series of 6-aminopyrazolyl-pyridine-3-carbonitriles as JAK2 kinase inhibitors was reported. Biochemical screening, followed by profile optimization, resulted in JAK2 inhibitors exhibiting good kinase selectivity, pharmacokinetic properties, physical properties and pharmacodynamic effects.