Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Rubinstein is active.

Publication


Featured researches published by Michael Rubinstein.


international conference on computer graphics and interactive techniques | 2008

Improved seam carving for video retargeting

Michael Rubinstein; Ariel Shamir; Shai Avidan

Video, like images, should support content aware resizing. We present video retargeting using an improved seam carving operator. Instead of removing 1D seams from 2D images we remove 2D seam manifolds from 3D space-time volumes. To achieve this we replace the dynamic programming method of seam carving with graph cuts that are suitable for 3D volumes. In the new formulation, a seam is given by a minimal cut in the graph and we show how to construct a graph such that the resulting cut is a valid seam. That is, the cut is monotonic and connected. In addition, we present a novel energy criterion that improves the visual quality of the retargeted images and videos. The original seam carving operator is focused on removing seams with the least amount of energy, ignoring energy that is introduced into the images and video by applying the operator. To counter this, the new criterion is looking forward in time - removing seams that introduce the least amount of energy into the retargeted result. We show how to encode the improved criterion into graph cuts (for images and video) as well as dynamic programming (for images). We apply our technique to images and videos and present results of various applications.


international conference on computer graphics and interactive techniques | 2012

Eulerian video magnification for revealing subtle changes in the world

Hao-Yu Wu; Michael Rubinstein; Eugene Shih; John V. Guttag; William T. Freeman

Our goal is to reveal temporal variations in videos that are difficult or impossible to see with the naked eye and display them in an indicative manner. Our method, which we call Eulerian Video Magnification, takes a standard video sequence as input, and applies spatial decomposition, followed by temporal filtering to the frames. The resulting signal is then amplified to reveal hidden information. Using our method, we are able to visualize the flow of blood as it fills the face and also to amplify and reveal small motions. Our technique can run in real time to show phenomena occurring at the temporal frequencies selected by the user.


international conference on computer graphics and interactive techniques | 2009

Multi-operator media retargeting

Michael Rubinstein; Ariel Shamir; Shai Avidan

Content aware resizing gained popularity lately and users can now choose from a battery of methods to retarget their media. However, no single retargeting operator performs well on all images and all target sizes. In a user study we conducted, we found that users prefer to combine seam carving with cropping and scaling to produce results they are satisfied with. This inspires us to propose an algorithm that combines different operators in an optimal manner. We define a resizing space as a conceptual multi-dimensional space combining several resizing operators, and show how a path in this space defines a sequence of operations to retarget media. We define a new image similarity measure, which we term Bi-Directional Warping (BDW), and use it with a dynamic programming algorithm to find an optimal path in the resizing space. In addition, we show a simple and intuitive user interface allowing users to explore the resizing space of various image sizes interactively. Using key-frames and interpolation we also extend our technique to retarget video, providing the flexibility to use the best combination of operators at different times in the sequence.


international conference on computer graphics and interactive techniques | 2013

Phase-based video motion processing

Neal Wadhwa; Michael Rubinstein; William T. Freeman

We introduce a technique to manipulate small movements in videos based on an analysis of motion in complex-valued image pyramids. Phase variations of the coefficients of a complex-valued steerable pyramid over time correspond to motion, and can be temporally processed and amplified to reveal imperceptible motions, or attenuated to remove distracting changes. This processing does not involve the computation of optical flow, and in comparison to the previous Eulerian Video Magnification method it supports larger amplification factors and is significantly less sensitive to noise. These improved capabilities broaden the set of applications for motion processing in videos. We demonstrate the advantages of this approach on synthetic and natural video sequences, and explore applications in scientific analysis, visualization and video enhancement.


computer vision and pattern recognition | 2013

Unsupervised Joint Object Discovery and Segmentation in Internet Images

Michael Rubinstein; Armand Joulin; Johannes Kopf; Ce Liu

We present a new unsupervised algorithm to discover and segment out common objects from large and diverse image collections. In contrast to previous co-segmentation methods, our algorithm performs well even in the presence of significant amounts of noise images (images not containing a common object), as typical for datasets collected from Internet search. The key insight to our algorithm is that common object patterns should be salient within each image, while being sparse with respect to smooth transformations across other images. We propose to use dense correspondences between images to capture the sparsity and visual variability of the common object over the entire database, which enables us to ignore noise objects that may be salient within their own images but do not commonly occur in others. We performed extensive numerical evaluation on established co-segmentation datasets, as well as several new datasets generated using Internet search. Our approach is able to effectively segment out the common object for diverse object categories, while naturally identifying images where the common object is not present.


international conference on computer graphics and interactive techniques | 2014

The visual microphone: passive recovery of sound from video

Abe Davis; Michael Rubinstein; Neal Wadhwa; Gautham J. Mysore; William T. Freeman

When sound hits an object, it causes small vibrations of the objects surface. We show how, using only high-speed video of the object, we can extract those minute vibrations and partially recover the sound that produced them, allowing us to turn everyday objects---a glass of water, a potted plant, a box of tissues, or a bag of chips---into visual microphones. We recover sounds from high-speed footage of a variety of objects with different properties, and use both real and simulated data to examine some of the factors that affect our ability to visually recover sound. We evaluate the quality of recovered sounds using intelligibility and SNR metrics and provide input and recovered audio samples for direct comparison. We also explore how to leverage the rolling shutter in regular consumer cameras to recover audio from standard frame-rate videos, and use the spatial resolution of our method to visualize how sound-related vibrations vary over an objects surface, which we can use to recover the vibration modes of an object.


international conference on computational photography | 2014

Riesz pyramids for fast phase-based video magnification

Neal Wadhwa; Michael Rubinstein; Frederic Durand; William T. Freeman

We present a new compact image pyramid representation, the Riesz pyramid, that can be used for real-time phase-based motion magnification. Our new representation is less overcomplete than even the smallest two orientation, octave-bandwidth complex steerable pyramid, and can be implemented using compact, efficient linear filters in the spatial domain. Motion-magnified videos produced with this new representation are of comparable quality to those produced with the complex steerable pyramid. When used with phase-based video magnification, the Riesz pyramid phase-shifts image features along only their dominant orientation rather than every orientation like the complex steerable pyramid.


international conference on computer graphics and interactive techniques | 2015

A computational approach for obstruction-free photography

Tianfan Xue; Michael Rubinstein; Ce Liu; William T. Freeman

We present a unified computational approach for taking photos through reflecting or occluding elements such as windows and fences. Rather than capturing a single image, we instruct the user to take a short image sequence while slightly moving the camera. Differences that often exist in the relative position of the background and the obstructing elements from the camera allow us to separate them based on their motions, and to recover the desired background scene as if the visual obstructions were not there. We show results on controlled experiments and many real and practical scenarios, including shooting through reflections, fences, and raindrop-covered windows.


computer vision and pattern recognition | 2011

Motion denoising with application to time-lapse photography

Michael Rubinstein; Ce Liu; Peter Sand; William T. Freeman

Motions can occur over both short and long time scales. We introduce motion denoising, which treats short-term changes as noise, long-term changes as signal, and re-renders a video to reveal the underlying long-term events. We demonstrate motion denoising for time-lapse videos. One of the characteristics of traditional time-lapse imagery is stylized jerkiness, where short-term changes in the scene appear as small and annoying jitters in the video, often obfuscating the underlying temporal events of interest. We apply motion denoising for resynthesizing time-lapse videos showing the long-term evolution of a scene with jerky short-term changes removed. We show that existing filtering approaches are often incapable of achieving this task, and present a novel computational approach to denoise motion without explicit motion analysis. We demonstrate promising experimental results on a set of challenging time-lapse sequences.


european conference on computer vision | 2012

Annotation propagation in large image databases via dense image correspondence

Michael Rubinstein; Ce Liu; William T. Freeman

Our goal is to automatically annotate many images with a set of word tags and a pixel-wise map showing where each word tag occurs. Most previous approaches rely on a corpus of training images where each pixel is labeled. However, for large image databases, pixel labels are expensive to obtain and are often unavailable. Furthermore, when classifying multiple images, each image is typically solved for independently, which often results in inconsistent annotations across similar images. In this work, we incorporate dense image correspondence into the annotation model, allowing us to make do with significantly less labeled data and to resolve ambiguities by propagating inferred annotations from images with strong local visual evidence to images with weaker local evidence. We establish a large graphical model spanning all labeled and unlabeled images, then solve it to infer annotations, enforcing consistent annotations over similar visual patterns. Our model is optimized by efficient belief propagation algorithms embedded in an expectation-maximization (EM) scheme. Extensive experiments are conducted to evaluate the performance on several standard large-scale image datasets, showing that the proposed framework outperforms state-of-the-art methods.

Collaboration


Dive into the Michael Rubinstein's collaboration.

Top Co-Authors

Avatar

Neal Wadhwa

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederic Durand

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hao-Yu Wu

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

John V. Guttag

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tianfan Xue

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ariel Shamir

Interdisciplinary Center Herzliya

View shared research outputs
Top Co-Authors

Avatar

Abe Davis

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Justin G. Chen

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge