Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian Charles Lee is active.

Publication


Featured researches published by Brian Charles Lee.


The Astrophysical Journal | 2004

The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey

Max Tegmark; Michael R. Blanton; Michael A. Strauss; Fiona Hoyle; David J. Schlegel; Roman Scoccimarro; Michael S. Vogeley; David H. Weinberg; Idit Zehavi; Andreas A. Berlind; Tamas Budavari; A. Connolly; Daniel J. Eisenstein; Douglas P. Finkbeiner; Joshua A. Frieman; James E. Gunn; A. Hamilton; Lam Hui; Bhuvnesh Jain; David E. Johnston; S. Kent; Huan Lin; Reiko Nakajima; Robert C. Nichol; Jeremiah P. Ostriker; Adrian Pope; Ryan Scranton; Uros Seljak; Ravi K. Sheth; Albert Stebbins

We measure the large-scale real-space power spectrum P(k) using a sample of 205,443 galaxies from the Sloan Digital Sky Survey, covering 2417 square degrees with mean redshift z~0.1. We employ a matrix-based method using pseudo-Karhunen-Loeve eigenmodes, producing uncorrelated minimum-variance measurements in 22 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.02 h/Mpc < k < 0.3h/Mpc. We pay particular attention to modeling, quantifying and correcting for potential systematic errors, nonlinear redshift distortions and the artificial red-tilt caused by luminosity-dependent bias. Our final result is a measurement of the real-space matter power spectrum P(k) up to an unknown overall multiplicative bias factor. Our calculations suggest that this bias factor is independent of scale to better than a few percent for k<0.1h/Mpc, thereby making our results useful for precision measurements of cosmological parameters in conjunction with data from other experiments such as the WMAP satellite. As a simple characterization of the data, our measurements are well fit by a flat scale-invariant adiabatic cosmological model with h Omega_m =0.201+/- 0.017 and L* galaxy sigma_8=0.89 +/- 0.02 when fixing the baryon fraction Omega_b/Omega_m=0.17 and the Hubble parameter h=0.72; cosmological interpretation is given in a companion paper.We measure the large-scale real-space power spectrum P(k) by using a sample of 205,443 galaxies from the Sloan Digital Sky Survey, covering 2417 effective square degrees with mean redshift z ≈ 0.1. We employ a matrix-based method using pseudo-Karhunen-Loeve eigenmodes, producing uncorrelated minimum-variance measurements in 22 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.02 h Mpc-1 < k < 0.3 h Mpc-1. We pay particular attention to modeling, quantifying, and correcting for potential systematic errors, nonlinear redshift distortions, and the artificial red-tilt caused by luminosity-dependent bias. Our results are robust to omitting angular and radial density fluctuations and are consistent between different parts of the sky. Our final result is a measurement of the real-space matter power spectrum P(k) up to an unknown overall multiplicative bias factor. Our calculations suggest that this bias factor is independent of scale to better than a few percent for k < 0.1 h Mpc-1, thereby making our results useful for precision measurements of cosmological parameters in conjunction with data from other experiments such as the Wilkinson Microwave Anisotropy Probe satellite. The power spectrum is not well-characterized by a single power law but unambiguously shows curvature. As a simple characterization of the data, our measurements are well fitted by a flat scale-invariant adiabatic cosmological model with h Ωm = 0.213 ± 0.023 and σ8 = 0.89 ± 0.02 for L* galaxies, when fixing the baryon fraction Ωb/Ωm = 0.17 and the Hubble parameter h = 0.72; cosmological interpretation is given in a companion paper.


Physical Review D | 2006

Cosmological constraints from the SDSS luminous red galaxies

Max Tegmark; Daniel J. Eisenstein; Michael A. Strauss; David H. Weinberg; Michael R. Blanton; Joshua A. Frieman; Masataka Fukugita; James E. Gunn; A. Hamilton; Gillian R. Knapp; Robert C. Nichol; Jeremiah P. Ostriker; Nikhil Padmanabhan; Will J. Percival; David J. Schlegel; Donald P. Schneider; Roman Scoccimarro; Uros Seljak; Hee-Jong Seo; M. E. C. Swanson; Alexander S. Szalay; Michael S. Vogeley; Jaiyul Yoo; Idit Zehavi; Kevork N. Abazajian; Scott F. Anderson; James Annis; Neta A. Bahcall; Bruce A. Bassett; Andreas A. Berlind

We measure the large-scale real-space power spectrum P(k) using luminous red galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS) and use this measurement to sharpen constraints on cosmological parameters from the Wilkinson Microwave Anisotropy Probe (WMAP). We employ a matrix-based power spectrum estimation method using Pseudo-Karhunen-Loeve eigenmodes, producing uncorrelated minimum-variance measurements in 20 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.01h/Mpc 0.1h/Mpc and associated nonlinear complications, yet agree well with more aggressive published analyses where nonlinear modeling is crucial.


The Astrophysical Journal | 2008

The Milky Way Tomography with SDSS. II. Stellar Metallicity

Željko Ivezić; Branimir Sesar; Mario Juric; Nicholas A. Bond; Julianne J. Dalcanton; Constance M. Rockosi; Brian Yanny; Heidi Jo Newberg; Timothy C. Beers; Carlos Allende Prieto; Ron Wilhelm; Young Sun Lee; Thirupathi Sivarani; John E. Norris; Coryn A. L. Bailer-Jones; Paola Re Fiorentin; David J. Schlegel; Alan Uomoto; Robert H. Lupton; Gillian R. Knapp; James E. Gunn; Kevin R. Covey; Gajus A. Miknaitis; Mamoru Doi; M. Tanaka; Masataka Fukugita; Steve Kent; Douglas P. Finkbeiner; Jeffrey A. Munn; Jeffrey R. Pier

In addition to optical photometry of unprecedented quality, the Sloan Digital Sky Survey (SDSS) is producing a massive spectroscopic database which already contains over 280,000 stellar spectra. Using eectiv e temperature and metallicity derived from SDSS spectra for 60,000 F and G type main sequence stars (0:2 < g r < 0:6), we develop polynomial models, reminiscent of traditional methods based on the UBV photometry, for estimating these parameters from the SDSS u g and g r colors. These estimators reproduce SDSS spectroscopic parameters with a root-mean-square scatter of 100 K for eectiv e temperature, and 0.2 dex for metallicity (limited by photometric errors), which are similar to random and systematic uncertainties in spectroscopic determinations. We apply this method to a photometric catalog of coadded SDSS observations and study the photometric metallicity distribution of 200,000 F and G type stars observed in 300 deg 2 of high Galactic latitude sky. These deeper (g < 20:5) and photometrically precise ( 0.01 mag) coadded data enable an accurate measurement of the unbiased metallicity distribution for a complete volume-limited sample of stars at distances between 500 pc and 8 kpc. The metallicity distribution can be exquisitely modeled using two components with a spatially varying number ratio, that correspond to disk and halo. The best-t number ratio of the two components is consistent with that implied by the decomposition of stellar counts proles into exponential disk and power-law halo components by Juri c et al. (2008). The two components also possess the kinematics expected for disk and halo stars. The metallicity of the halo component can be modeled as a spatially invariant Gaussian distribution with a mean of [F e=H] = 1:46 and a standard deviation of 0.3 dex. The disk metallicity distribution is non-Gaussian, with a remarkably small scatter (rms 0.16 dex) and the median smoothly decreasing with distance from the plane from 0:6 at 500 pc to 0:8 beyond several kpc. Similarly, we nd using proper motion measurements that a nonGaussian rotational velocity distribution of disk stars shifts by 50 km/s as the distance from the plane increases from 500 pc to several kpc. Despite this similarity, the metallicity and rotational velocity distributions of disk stars are not correlated (Kendall’s = 0:017 0:018). This absence of a correlation between metallicity and kinematics for disk stars is in a conict with the traditional decomposition in terms of thin and thick disks, which predicts a strong correlation ( = 0:30 0:04) at 1 kpc from the mid-plane. Instead, the variation of the metallicity and rotational velocity distributions can be modeled using non-Gaussian functions that retain their shapes and only shift as the distance from the mid-plane increases. We also study the metallicity distribution using a shallower (g < 19:5) but much larger sample of close to three million stars in 8500 sq. deg. of sky included in SDSS Data Release 6. The large sky coverage enables the detection of coherent substructures in the kinematics{ metallicity space, such as the Monoceros stream, which rotates faster than the LSR, and has a median metallicity of [F e=H] = 0:95, with an rms scatter of only 0.15 dex. We extrapolate our results to the performance expected from the Large Synoptic Survey Telescope (LSST) and estimate that LSST will obtain metallicity measurements accurate to 0.2 dex or better, with proper motion measurements accurate to 0.2-0.5 mas/yr, for about 200 million F/G dwarf stars within a distance limit of 100 kpc (g < 23:5). Subject headings: methods: data analysis | stars: statistics | Galaxy: halo, kinematics and dynamics, stellar content, structure


Astronomische Nachrichten | 2004

SDSS data management and photometric quality assessment

Željko Ivezić; Robert H. Lupton; David J. Schlegel; B. Boroski; Jennifer K. Adelman-McCarthy; Brian Yanny; S. Kent; Christopher Stoughton; Douglas P. Finkbeiner; Nikhil Padmanabhan; Constance M. Rockosi; James E. Gunn; Gillian R. Knapp; Michael A. Strauss; Gordon T. Richards; Daniel J. Eisenstein; Tom Nicinski; S. J. Kleinman; Jurek Krzesinski; Peter R. Newman; Stephanie A. Snedden; Aniruddha R. Thakar; Alexander S. Szalay; Jeffrey A. Munn; J.A. Smith; Douglas L. Tucker; Brian Charles Lee

We summarize the Sloan Digital Sky Survey data acquisition and processing steps, and describe runQA, a pipeline designed for automated data quality assessment. In particular, we show how the position of the stellar locus in color-color diagrams can be used to estimate the accuracy of photometric zeropoint calibration to better than 0.01 mag in 0.03 deg2 patches. Using this method, we estimate that typical photometric zeropoint calibration errors for SDSS imaging data are not larger than ∼0.01 mag in the g, r, and i bands, 0.02 mag in the z band, and 0.03 mag in the u band (root-mean-scatter for zeropoint offsets). (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)


Astronomische Nachrichten | 2006

The Sloan Digital Sky Survey Monitor Telescope Pipeline

Douglas L. Tucker; Stephen B. H. Kent; Michael W. Richmond; J. Annis; J.A. Smith; Sahar S. Allam; C.T. Rodgers; J.L. Stute; Jennifer K. Adelman-McCarthy; J. Brinkmann; Mamoru Doi; Douglas P. Finkbeiner; Masataka Fukugita; J. Goldston; B. Greenway; James E. Gunn; John S. Hendry; David W. Hogg; Shin-ichi Ichikawa; Željko Ivezić; Gillian R. Knapp; Hubert Lampeitl; Brian Charles Lee; Huan Lin; Timothy A. McKay; Aronne Merrelli; Jeffrey A. Munn; Eric H. Neilsen; Heidi Jo Newberg; Gordon T. Richards

The photometric calibration of the Sloan Digital Sky Survey (SDSS) is a multi-step process which involves data from three different telescopes: the 1.0-m telescope at the US Naval Observatory (USNO), Flagstaff Station, Arizona (which was used to establish the SDSS standard star network); the SDSS 0.5-m Photometric Telescope (PT) at the Apache Point Observatory (APO), New Mexico (which calculates nightly extinctions and calibrates secondary patch transfer fields); and the SDSS 2.5-m telescope at APO (which obtains the imaging data for the SDSS proper). In this paper, we describe the Monitor Telescope Pipeline, MTPIPE, the software pipeline used in processing the data from the single-CCD telescopes used in the photometric calibration of the SDSS (i.e., the USNO 1.0-m and the PT). We (a)


Astrophysical Journal Supplement Series | 2006

Percolation Galaxy Groups and Clusters in the SDSS Redshift Survey: Identification, Catalogs, and the Multiplicity Function

Andreas A. Berlind; Joshua A. Frieman; David H. Weinberg; Michael R. Blanton; Michael S. Warren; Kevork N. Abazajian; Ryan Scranton; David W. Hogg; Roman Scoccimarro; Neta A. Bahcall; J. Brinkmann; J. Richard Gott; S. J. Kleinman; Jurek Krzesinski; Brian Charles Lee; Christopher J. Miller; Atsuko Nitta; Donald P. Schneider; Douglas L. Tucker; Idit Zehavi

We identify galaxy groups and clusters in volume-limited samples of the Sloan Digital Sky Survey (SDSS) redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups with 10 or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than ~1%; a halo completeness of more than ~97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is ~20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtain three group and cluster catalogs for three volume-limited samples that cover 3495.1 deg2 on the sky, go out to redshifts of 0.1, 0.068, and 0.045, and contain 57,138, 37,820, and 18,895 galaxies, respectively. We correct for incompleteness caused by fiber collisions and survey edges and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.


The Astrophysical Journal | 2002

Analysis of systematic effects and statistical uncertainties in angular clustering of galaxies from early sloan digital sky survey data

Ryan Scranton; David E. Johnston; Scott Dodelson; Joshua A. Frieman; A. J. Connolly; Daniel J. Eisenstein; James E. Gunn; Lam Hui; Bhuvnesh Jain; Stephen B. H. Kent; Jon Loveday; Vijay K. Narayanan; Robert C. Nichol; Liam O'Connell; Roman Scoccimarro; Ravi K. Sheth; Albert Stebbins; Michael A. Strauss; Alexander S. Szalay; István Szapudi; Max Tegmark; Michael S. Vogeley; Idit Zehavi; James Annis; Neta A. Bahcall; J. Brinkman; István Csabai; Robert B. Hindsley; Zeljko Ivezic; Rita S. J. Kim

The angular distribution of galaxies encodes a wealth of information about large-scale structure. Ultimately, the Sloan Digital Sky Survey (SDSS) will record the angular positions of order of 108 galaxies in five bands, adding significantly to the cosmological constraints. This is the first in a series of papers analyzing a rectangular stripe of 25 × 90° from early SDSS data. We present the angular correlation function for galaxies in four separate magnitude bins on angular scales ranging from 0003 to 15°. Much of the focus of this paper is on potential systematic effects. We show that the final galaxy catalog—with the mask accounting for regions of poor seeing, reddening, bright stars, etc.—is free from external and internal systematic effects for galaxies brighter than r* = 22. Our estimator of the angular correlation function includes the effects of the integral constraint and the mask. The full covariance matrix of errors in these estimates is derived using mock catalogs with further estimates using a number of other methods.


The Astronomical Journal | 2007

Sloan Digital Sky Survey Standard Star Catalog for Stripe 82: The Dawn of Industrial 1% Optical Photometry

Željko Ivezić; Gajus A. Miknaitis; Huan Lin; Douglas L. Tucker; Robert H. Lupton; James E. Gunn; Gillian R. Knapp; Michael A. Strauss; Branimir Sesar; Mamoru Doi; M. Tanaka; Masataka Fukugita; Jon A. Holtzman; Steve Kent; Brian Yanny; David J. Schlegel; Douglas P. Finkbeiner; Nikhil Padmanabhan; Constance M. Rockosi; Mario Juric; Nicholas A. Bond; Brian Charles Lee; Chris Stoughton; Sebastian Jester; Hugh C. Harris; Paul Harding; Heather L. Morrison; J. Brinkmann; Donald P. Schneider; Donald G. York

We describe a standard star catalog constructed using multiple SDSS photometric observations (at least four per band, with a median of 10) in the ugriz system. The catalog includes 1.01 million nonvariable unresolved objects from the equatorial stripe 82 (|δJ2000.0| < 1.266°) in the right ascension range 20h34m-4h00m and with the corresponding r-band (approximately Johnson V-band) magnitudes in the range 14-22. The distributions of measurements for individual sources demonstrate that the photometric pipeline correctly estimates random photometric errors, which are below 0.01 mag for stars brighter than 19.5, 20.5, 20.5, 20, and 18.5 in ugriz, respectively (about twice as good as for individual SDSS runs). Several independent tests of the internal consistency suggest that the spatial variation of photometric zero points is not larger than ~0.01 mag (rms). In addition to being the largest available data set with optical photometry internally consistent at the ~1% level, this catalog provides a practical definition of the SDSS photometric system. Using this catalog, we show that photometric zero points for SDSS observing runs can be calibrated within a nominal uncertainty of 2% even for data obtained through 1 mag thick clouds, and we demonstrate the existence of He and H white dwarf sequences using photometric data alone. Based on the properties of this catalog, we conclude that upcoming large-scale optical surveys such as the Large Synoptic Survey Telescope will be capable of delivering robust 1% photometry for billions of sources.


The Astronomical Journal | 2007

Exploring the Variable Sky with the Sloan Digital Sky Survey

Branimir Sesar; Zeljko Ivezic; Robert H. Lupton; Mario Juric; James E. Gunn; Gillian R. Knapp; Nathan De Lee; Gajus A. Miknaitis; Huan Lin; Douglas L. Tucker; Mamoru Doi; M. Tanaka; Masataka Fukugita; Jon A. Holtzman; Steve Kent; Brian Yanny; David J. Schlegel; Douglas P. Finkbeiner; Nikhil Padmanabhan; Constance M. Rockosi; Nicholas A. Bond; Brian Charles Lee; Chris Stoughton; Sebastian Jester; Hugh C. Harris; Paul Harding; J. Brinkmann; Donald P. Schneider; Donald G. York; Michael W. Richmond

We quantify the variability of faint unresolved optical sources using a catalog based on multiple SDSS imaging observations. The catalog covers SDSS stripe 82, which lies along the celestial equator in the southern Galactic hemisphere (22h24m < ?J2000.0 < 04h08m, -1.27? < ?J2000.0 < +1.27?, ~290 deg2), and contains 34 million photometric observations in the SDSS ugriz system for 748,084 unresolved sources at high Galactic latitudes (b < -20?) that were observed at least four times in each of the ugri bands (with a median of 10 observations obtained over ~6 yr). In each photometric bandpass we compute various low-order light-curve statistics, such as rms scatter, ?2 per degree of freedom, skewness, and minimum and maximum magnitude, and use them to select and study variable sources. We find that 2% of unresolved optical sources brighter than g = 20.5 appear variable at the 0.05 mag level (rms) simultaneously in the g and r bands (at high Galactic latitudes). The majority (2 out of 3) of these variable sources are low-redshift (<2) quasars, although they represent only 2% of all sources in the adopted flux-limited sample. We find that at least 90% of quasars are variable at the 0.03 mag level (rms) and confirm that variability is as good a method for finding low-redshift quasars as the UV excess color selection (at high Galactic latitudes). We analyze the distribution of light-curve skewness for quasars and find that it is centered on zero. We find that about one-fourth of the variable stars are RR Lyrae stars, and that only 0.5% of stars from the main stellar locus are variable at the 0.05 mag level. The distribution of light-curve skewness in the g - r versus u - g color-color diagram on the main stellar locus is found to be bimodal (with one mode consistent with Algol-like behavior). Using over 600 RR Lyrae stars, we demonstrate rich halo substructure out to distances of 100 kpc. We extrapolate these results to the expected performance by the Large Synoptic Survey Telescope and estimate that it will obtain well-sampled, 2% accurate, multicolor light curves for ~2 million low-redshift quasars and discover at least 50 million variable stars.


The Astronomical Journal | 2000

Rotse all sky surveys for variable stars I: test fields

C. Akerlof; Susan Amrose; Richard Joseph Balsano; Joshua J. Bloch; D. Casperson; Sandra J. Fletcher; Galen R. Gisler; Jack G. Hills; Robert L. Kehoe; Brian Charles Lee; S. L. Marshall; Timothy A. McKay; Andrew Pawl; J. Schaefer; John J. Szymanski; J. Wren

The Robotic Optical Transient Search Experiment I (ROTSE-I) experiment has generated CCD photometry for the entire northern sky in two epochs nightly since 1998 March. These sky patrol data are a powerful resource for studies of astrophysical transients. As a demonstration project, we present first results of a search for periodic variable stars derived from ROTSE-I observations. Variable identification, period determination, and type classification are conducted via automatic algorithms. In a set of nine ROTSE-I sky patrol fields covering roughly 2000 deg2, we identify 1781 periodic variable stars with mean magnitudes between mv = 10.0 and mv = 15.5. About 90% of these objects are newly identified as variable. Examples of many familiar types are presented. All classifications for this study have been manually confirmed. The selection criteria for this analysis have been conservatively defined and are known to be biased against some variable classes. This preliminary study includes only 5.6% of the total ROTSE-I sky coverage, suggesting that the full ROTSE-I variable catalog will include more than 32,000 periodic variable stars.

Collaboration


Dive into the Brian Charles Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

James A. Wren

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. Szymanski

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon L. Marshall

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge