Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian D. Roy is active.

Publication


Featured researches published by Brian D. Roy.


PLOS ONE | 2007

Creatine Monohydrate and Conjugated Linoleic Acid Improve Strength and Body Composition Following Resistance Exercise in Older Adults

Mark A. Tarnopolsky; Andrew Zimmer; Jeremy S. Paikin; Adeel Safdar; Alissa Aboud; Erin Pearce; Brian D. Roy; Timothy J. Doherty

Aging is associated with lower muscle mass and an increase in body fat. We examined whether creatine monohydrate (CrM) and conjugated linoleic acid (CLA) could enhance strength gains and improve body composition (i.e., increase fat-free mass (FFM); decrease body fat) following resistance exercise training in older adults (>65 y). Men (N = 19) and women (N = 20) completed six months of resistance exercise training with CrM (5g/d)+CLA (6g/d) or placebo with randomized, double blind, allocation. Outcomes included: strength and muscular endurance, functional tasks, body composition (DEXA scan), blood tests (lipids, liver function, CK, glucose, systemic inflammation markers (IL-6, C-reactive protein)), urinary markers of compliance (creatine/creatinine), oxidative stress (8-OH-2dG, 8-isoP) and bone resorption (Ν-telopeptides). Exercise training improved all measurements of functional capacity (P<0.05) and strength (P<0.001), with greater improvement for the CrM+CLA group in most measurements of muscular endurance, isokinetic knee extension strength, FFM, and lower fat mass (P<0.05). Plasma creatinine (P<0.05), but not creatinine clearance, increased for CrM+CLA, with no changes in serum CK activity or liver function tests. Together, this data confirms that supervised resistance exercise training is safe and effective for increasing strength in older adults and that a combination of CrM and CLA can enhance some of the beneficial effects of training over a six-month period. Trial Registration. ClinicalTrials.gov NCT00473902


Journal of The International Society of Sports Nutrition | 2008

Milk: the new sports drink? A Review

Brian D. Roy

There has been growing interest in the potential use of bovine milk as an exercise beverage, especially during recovery from resistance training and endurance sports. Based on the limited research, milk appears to be an effective post-resistance exercise beverage that results in favourable acute alterations in protein metabolism. Milk consumption acutely increases muscle protein synthesis, leading to an improved net muscle protein balance. Furthermore, when post-exercise milk consumption is combined with resistance training (12 weeks minimum), greater increases in muscle hypertrophy and lean mass have been observed. Although research with milk is limited, there is some evidence to suggest that milk may be an effective post-exercise beverage for endurance activities. Low-fat milk has been shown to be as effective, if not more effective, than commercially available sports drinks as a rehydration beverage. Milk represents a more nutrient dense beverage choice for individuals who partake in strength and endurance activities, compared to traditional sports drinks. Bovine low-fat fluid milk is a safe and effective post exercise beverage for most individuals, except for those who are lactose intolerant. Further research is warranted to better delineate the possible applications and efficacy of bovine milk in the field of sports nutrition.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

Skeletal muscle PLIN proteins, ATGL and CGI-58, interactions at rest and following stimulated contraction

Rebecca E. K. MacPherson; Sofhia V. Ramos; Rene Vandenboom; Brian D. Roy; Sandra J. Peters

Evidence indicates that skeletal muscle lipid droplet-associated proteins (PLINs) regulate lipolysis through protein-protein interactions on the lipid droplet surface. In adipocytes, PLIN1 is thought to regulate lipolysis by directly interacting with comparative gene identification-58 (CGI-58), an activator of adipose triglyceride lipase (ATGL). Upon lipolytic stimulation, PLIN1 is phosphorylated, releasing CGI-58 to fully activate ATGL and initiate triglyceride breakdown. The absence of PLIN1 in skeletal muscle leads us to believe that other PLIN family members undertake this role. Our purpose was to examine interactions between PLIN2, PLIN3, and PLIN5, with ATGL and its coactivator CGI-58 at rest and following contraction. Isolated rat solei were incubated for 30 min at rest or during 30 min of intermittent tetanic stimulation [150-ms volleys at 60 Hz with a train rate of 20 tetani/min (25°C)] to maximally stimulate intramuscular lipid breakdown. Results show that the interaction between ATGL and CGI-58 increased 128% following contraction (P = 0.041). Further, ATGL interacts with PLIN2, PLIN3, and PLIN5 at rest and following contraction. The PLIN2-ATGL interaction decreased significantly by 21% following stimulation (P = 0.013). Both PLIN3 and PLIN5 coprecipitated with CGI-58 at rest and following contraction, while there was no detectable interaction between PLIN2 and CGI-58 in either condition. Therefore, our findings indicate that in skeletal muscle, during contraction-induced muscle lipolysis, ATGL and CGI-58 strongly associate and that the PLIN proteins work together to regulate lipolysis, in part, by preventing ATGL and CGI-58 interactions at rest.


Medicine and Science in Sports and Exercise | 2000

Macronutrient intake and whole body protein metabolism following resistance exercise.

Brian D. Roy; Jonathon R. Fowles; Robert Hill; Mark A. Tarnopolsky

UNLABELLED The provision of carbohydrate (CHO) supplements following resistance exercise attenuated muscle protein (PRO) degradation (Roy et al. J. Appl. Physiol. 82:1882-1888, 1997). The addition of PRO may have a synergistic effect upon whole body protein balance by increasing synthesis (Biolo et al. Am. J. Physiol. 273:E122-E129, 1997). PURPOSE To determine if the macronutrient composition of a postexercise beverage would alter muscle anabolism and/or catabolism following resistance exercise. METHODS We provided isoenergetic CHO (1 g x kg(-1)) and CHO/PRO/FAT supplements and placebo (PL) immediately (t = 0 h) and 1 h (t = + 1 h) following resistance exercise (9 exercises/3 sets/80% 1 RM) to 10 young, healthy, resistance-trained males. Whole body leucine turnover was determined from L-[1-13C]leucine kinetics at approximately 4 h postexercise. RESULTS No differences were observed for urinary 3-methylhistidine or urea nitrogen excretion between the trials. Leucine flux was significantly elevated at approximately 4 h postexercise for both CHO/PRO/FAT (177.59+/-12.68 micromol x kg(-1) x h(-1)) and CHO (156.18+/-7.77 micromol x kg(-1) x h(-1)) versus PL (126.32+/-10.51 micromol x kg(-1) x h(-1)) (P < 0.01). Whole body leucine oxidation was elevated at approximately 4 h for CHO/PRO/FAT (29.50+/-3.34 micromol x kg(-1) h(-1)) versus CHO (16.32+/-2.33 micromol x kg(-1) x h(-1)) (P < 0.01) and PL (21.29+/-2.54 micromol x kg(-1) x h(-1)) (P < 0.05). Nonoxidative leucine disposal (NOLD) was significantly elevated at approximately 4 h for both CHO/PRO/FAT (148.09+/-10.37 micromol x kg(-1) x h(-1)) and CHO (139.86+/-7.02 micromol x kg(-1) x h(-1)) versus PL (105.03+/-8.97 micromol x kg(-1) x h(-1)) (P < 0.01). CONCLUSIONS These results suggest that consumption of either CHO or CHO/PRO/FAT immediately and 1 h following a resistance training bout increased NOLD as compared with a placebo.


The Journal of Membrane Biology | 2010

Skeletal muscle type comparison of subsarcolemmal mitochondrial membrane phospholipid fatty acid composition in rat.

Leslie E. Stefanyk; Nicole S. Coverdale; Brian D. Roy; Sandra J. Peters; Paul J. LeBlanc

The phospholipid composition of membranes can influence the physiological functioning of the cell or subcellular organelle. This association has been previously demonstrated in skeletal muscle, where cellular or subcellular membrane, specifically mitochondria, phospholipid composition is linked to muscle function. However, these observations are based on whole mixed skeletal muscle analysis, with little information on skeletal muscles of differing fiber-type compositions. These past approaches that used mixed muscle may have misidentified outcomes or masked differences. Thus, the purpose of this study was to compare the phospholipid fatty acid composition of subsarcolemmal (SS) mitochondria isolated from slow-twitch postural (soleus), fast-twitch highly oxidative glycolytic locomotory (red gastrocnemius), and fast-twitch oxidative glycolytic locomotory (plantaris) skeletal muscles. The main findings of the study demonstrated unique differences between SS mitochondrial membranes from postural soleus compared to the other locomotory skeletal muscles examined, specifically lower percentage mole fraction of phosphatidylcholine (PC) and significantly higher percentage mole fraction of saturated fatty acids (SFA) and lower n6 polyunsaturated fatty acids (PUFA), resulting in a lower unsaturation index. We also found that although there was no difference in the percentage mole fraction of cardiolipin (CL) between skeletal muscle types examined, CL of soleus mitochondrial membranes were approximately twofold more SFA and approximately two-thirds less PUFA, resulting in a 20–30% lower unsaturation and peroxidation indices. Thus, the results of this study indicate unique membrane lipid composition of mitochondria isolated from different skeletal muscle types, a potential consequence of their respective duty cycles.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012

Subcellular localization of skeletal muscle lipid droplets and PLIN family proteins OXPAT and ADRP at rest and following contraction in rat soleus muscle

Rebecca E. K. MacPherson; Eric A.F. Herbst; Erica J. Reynolds; Rene Vandenboom; Brian D. Roy; Sandra J. Peters

Skeletal muscle lipid droplet-associated proteins (PLINs) are thought to regulate lipolysis through protein-protein interactions on the lipid droplet surface. In adipocytes, PLIN2 [adipocyte differentiation-related protein (ADRP)] is found only on lipid droplets, while PLIN5 (OXPAT, expressed only in oxidative tissues) is found both on and off the lipid droplet and may be recruited to lipid droplet membranes when needed. Our purpose was to determine whether PLIN5 is recruited to lipid droplets with contraction and to investigate the myocellular location and colocalization of lipid droplets, PLIN2, and PLIN5. Rat solei were isolated, and following a 30-min equilibration period, they were assigned to one of two groups: 1) 30 min of resting incubation and 2) 30 min of stimulation (n = 10 each). Immunofluorescence microscopy was used to determine subcellular content, distribution, and colocalization of lipid droplets, PLIN2, and PLIN5. There was a main effect for lower lipid and PLIN2 content in stimulated compared with rested muscles (P < 0.05). Lipid droplet distribution declined exponentially from the sarcolemma to the fiber center in the rested muscles (P = 0.001, r(2) = 0.99) and linearly in stimulated muscles (slope = -0.0023 ± 0.0006, P < 0.001, r(2) = 0.93). PLIN2 distribution declined exponentially from the sarcolemma to the fiber center in both rested and stimulated muscles (P < 0.0001, r(2) = 0.99 rest; P = 0.0004, r(2) = 0.98 stimulated), while PLIN5 distribution declined linearly (slope = -0.0085 ± 0.0009, P < 0.0001, r(2) = 0.94 rest; slope=-0.0078 ± 0.0010, P = 0.0003, r(2) = 0.91 stimulated). PLIN5-lipid droplets colocalized at rest with no difference poststimulation (P = 0.47; rest r(2) = 0.55 ± 0.02, stimulated r(2) = 0.58 ± 0.03). PLIN2-lipid droplets colocalized at rest with no difference poststimulation (P = 0.48; rest r(2) = 0.66 ± 0.02, stimulated r(2) = 0.65 ± 0.02). Contrary to our hypothesis, these results show that PLIN5 is not recruited to lipid droplets with contraction in isolated skeletal muscle.


Physiological Reports | 2013

Skeletal muscle PLIN3 and PLIN5 are serine phosphorylated at rest and following lipolysis during adrenergic or contractile stimulation

Rebecca E. K. MacPherson; Rene Vandenboom; Brian D. Roy; Sandra J. Peters

In adipose tissue, access of adipose triglyceride and hormone‐sensitive lipases (ATGL and HSL) to the lipid droplet depends on PLIN1 phosphorylation, however, PLIN1 is not expressed in skeletal muscle and the phosphorylation of the expressed PLINs has yet to be investigated. Further, direct interactions between skeletal muscle PLINs and HSL are unknown. We investigated the isolated and combined effects of epinephrine and contraction on PLIN‐to‐lipase interactions as well as phosphorylation. Isolated rat solei were assigned to one of four 30 min in vitro conditions (25°C): (1) rest; (2) intermittent tetanic stimulation (60 Hz for 150 msec; train rate 20/min); (3) 5 nmol/L epinephrine; (4) intermittent tetanic stimulation and 5 nmol/L epinephrine. Immunoprecipitation of serine phosphorylated proteins followed by Western blotting for PLIN2, PLIN3, PLIN5, revealed that only PLIN2 is not phosphorylated under any of the experimental conditions. This is the first study to show that in whole rat skeletal muscle PLIN3 and PLIN5 are serine phosphorylated. The degree of serine phosphorylation remained unchanged following adrenergic and/or contractile stimulation. Oil red O staining of muscle sections for lipid content shows a significant decrease following each condition, confirming lipolysis occurred (P < 0.05). PLIN2, 3, and 5 all interact with HSL and ATGL, but these interactions were unchanged following treatments. Our results show that in skeletal muscle, PLIN2 is not serine phosphorylated at rest or with lipolytic stimulation and that while PLIN3, PLIN5 are serine phosphorylated at rest, the degree of phosphorylation does not change with lipolytic stimulation.


Molecules | 2013

Maternal High Fat Feeding Does Not Have Long-Lasting Effects on Body Composition and Bone Health in Female and Male Wistar Rat Offspring at Young Adulthood

Paula M. Miotto; Laura M. Castelli; Foyinsola Amoye; Paul J. LeBlanc; Sandra J. Peters; Brian D. Roy; Wendy E. Ward

High fat diets adversely affect body composition, bone mineral and strength, and alter bone fatty acid composition. It is unclear if maternal high fat (HF) feeding permanently alters offspring body composition and bone health. Female rats were fed control (CON) or HF diet for 10 weeks, bred, and continued their diets throughout pregnancy and lactation. Male and female offspring were studied at weaning and 3 months, following consumption of CON diet. At weaning, but not 3 months of age, male and female offspring from dams fed HF diet had lower lean mass and higher fat and bone mass, and higher femur bone mineral density (females only) than offspring of dams fed CON diet. Male and female offspring femurs from dams fed HF diet had higher monounsaturates and lower n6 polyunsaturates at weaning than offspring from dams fed CON diet, where females from dams fed HF diet had higher saturates and lower n6 polyunsaturates at 3 months of age. There were no differences in strength of femurs or lumbar vertebrae at 3 months of age in either male or female offspring. In conclusion, maternal HF feeding did not permanently affect body composition and bone health at young adulthood in offspring.


High Altitude Medicine & Biology | 2000

Effects of a 21-Day Expedition to 6194 m on Human Skeletal Muscle SR Ca2+-ATPase

H. J. Green; Brian D. Roy; S. Grant; Russ Tupling; Christian Otto; Andrew Pipe; Donald C. McKenzie; J. Ouyang

We investigated the effects of a 21-day expedition to the summit of Mount Denali, Alaska (6,194 m) on selected Ca2+ sequestration properties of sarcoplasmic reticulum (SR) calcium pump in vastus lateralis muscle. Muscle samples were obtained by biopsy from 5 male climbers (peak oxygen consumption, VO2peak = 52.3 +/- 2.1 mL.kg(-1).min(-1)) approximately 7 days prior to (PRE) and 4 days following (POST) the expedition. A comparison of PRE versus POST measures of maximal Ca2+-ATPase activities (117 +/- 8.5 vs. 97.6 +/- 5.6 nmol.mg protein(-1).min(-1)) and Ca2+-uptake (204 +/- 15 vs. 161 +/- 11 nmol.mg protein(-1).min(-1)) measured in crude homogenates obtained from pre-exercised muscle, indicated only an effect (p < 0.05) of the expedition on Ca2+-uptake. The reduction in Ca2+-ATPase activity, representing 16.6%, was not significant (p = 0.089). The sarco endoplasmic reticulum calcium (SERCA)-ATPase isoforms, measured using Western blotting techniques, revealed a small reduction (p < 0.05) in SERCA 1 (-4.6 +/- 1.9%), but not in SERCA 2a (+2.0 +/- 1.4%). Prior to the expedition, both Ca2+-ATPase activity and Ca2+-uptake were reduced (p < 0.05) by approximately 34 and 18%, respectively, following 40 min of a two-step continuous cycling task (20 min at 59% VO2peak and 20 min at 74% VO2peak). The exercise-induced reduction in Ca2+-ATPase activity was independent of fiber type. Only in the case of Ca2+-uptake was a lower exercise response (p < 0.05) observed following the expedition, an effect that was due to the lower resting value. It is concluded that acclimatization as experienced during a mountaineering expedition induces changes in the properties of the SR Ca2+-pump, and particularly to Ca2+-sequestering function.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Skeletal muscle type comparison of pyruvate dehydrogenase phosphatase activity and isoform expression: effects of obesity and endurance training

Paul J. LeBlanc; Matthew Mulligan; AnaMaria Antolic; Laura MacPherson; J. Greig Inglis; Dale D. O. Martin; Brian D. Roy; Sandra J. Peters

Pyruvate dehydrogenase (PDH) plays an important role in regulating carbohydrate metabolism in skeletal muscle. PDH is activated by PDH phosphatase (PDP) and deactivated by PDH kinase (PDK). Obesity has a large negative impact on skeletal muscle carbohydrate metabolism, whereas endurance training has been shown to improve regulatory control of skeletal muscle carbohydrate metabolism, more so when coupled with obesity. A majority of this literature has focused on PDK, with little information available on PDP. To determine the relative role of PDP in regulating skeletal muscle PDH activity with obesity and endurance training, obese and lean Zucker rats remained sedentary or were endurance trained (1 h/day, 5 days/wk) for a period of 8 wk. Soleus, red gastrocnemius, (RG), and white gastrocnemius (WG) muscles were sampled after the training period. The main findings were 1) obesity resulted in a 46% decrease in PDP activity expressed per milligram extracted mitochondrial protein only in RG, while PDP isoform content was unchanged; 2) 8 wk of endurance training led to a significant 1.4-2.2-fold increase in PDP activity of all muscle examined from obese rats, and the concomitant increase in PDP1 protein was only seen in soleus and RG; 3) 8 wk of endurance training led to a trending 1.4-2.2-fold increase in PDP activity of all muscle examined from obese rats, and the concomitant increase in PDP1 protein was only seen in soleus and RG; and 4) PDP2 protein content was not affected by obesity or training. These results suggest that decreased PDP activity in oxidative skeletal muscles may play a role in the impairment of carbohydrate metabolism in obese rats, which is reversible with endurance training.

Collaboration


Dive into the Brian D. Roy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. J. Green

University of Waterloo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Grant

University of Waterloo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge