Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian D. Weinberg is active.

Publication


Featured researches published by Brian D. Weinberg.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Angiotensin-(1-7) and low-dose angiotensin II infusion reverse salt-induced endothelial dysfunction via different mechanisms in rat middle cerebral arteries

Matthew J. Durand; Gábor Raffai; Brian D. Weinberg; Julian H. Lombard

The goals of this study were to 1) determine the acute effect of ANG-(1-7) on vascular tone in isolated middle cerebral arteries (MCAs) from Sprague-Dawley rats fed a normal salt (NS; 0.4% NaCl) diet, 2) evaluate the ability of chronic intravenous infusion of ANG-(1-7) (4 ng·kg(-1)·min(-1)) for 3 days to restore endothelium-dependent dilation to acetylcholine (ACh) in rats fed a high-salt (HS; 4% NaCl) diet, and 3) determine whether the amelioration of endothelial dysfunction by ANG-(1-7) infusion in rats fed a HS diet is different from the protective effect of low-dose ANG II infusion in salt-fed rats. MCAs from rats fed a NS diet dilated in response to exogenous ANG-(1-7) (10(-10)-10(-5) M). Chronic ANG-(1-7) infusion significantly reduced vascular superoxide levels and restored the nitric oxide-dependent dilation to ACh (10(-10)-10(-5) M) that was lost in MCAs of rats fed a HS diet. Acute vasodilation to ANG-(1-7) and the restoration of ACh-induced dilation by chronic ANG-(1-7) infusion in rats fed a HS diet were blocked by the Mas receptor antagonist [D-ALA(7)]-ANG-(1-7) or the ANG II type 2 receptor antagonist PD-123319 and unaffected by ANG II type 1 receptor blockade with losartan. The restoration of ACh-induced dilation in MCAs of HS-fed rats by chronic intravenous infusion of ANG II (5 ng·kg(-1)·min(-1)) was blocked by losartan and unaffected by d-ALA. These findings demonstrate that circulating ANG-(1-7), working via the Mas receptor, restores endothelium-dependent vasodilation in cerebral resistance arteries of animals fed a HS diet via mechanisms distinct from those activated by low-dose ANG II infusion.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Mutation of Plekha7 attenuates salt-sensitive hypertension in the rat

Bradley T. Endres; Jessica R. C. Priestley; Oleg Palygin; Michael J. Flister; Matthew J. Hoffman; Brian D. Weinberg; Michael Grzybowski; Julian H. Lombard; Alexander Staruschenko; Carol Moreno; Howard J. Jacob; Aron M. Geurts

Significance Zinc-finger nuclease (ZFN)-mediated mutagenesis has now enabled researchers to manipulate specific genes to test their function in animal models other than mice. Applying ZFNs to rats, we can now test the role of specific human genome-wide association studies (GWAS)-nominated genes for hypertension in a well-characterized hypertensive rat model, the Dahl salt-sensitive rat. This study provides the first functional evidence that the GWAS-nominated gene Plekha7 plays an essential role in blood pressure regulation and cardiovascular function by modulating vascular function. Our results indicate that Plekha7 plays a role in the regulation of intracellular calcium, nitric oxide bioavailability, and the response of the vasculature to increased flow. PLEKHA7 (pleckstrin homology domain containing family A member 7) has been found in multiple studies as a candidate gene for human hypertension, yet functional data supporting this association are lacking. We investigated the contribution of this gene to the pathogenesis of salt-sensitive hypertension by mutating Plekha7 in the Dahl salt-sensitive (SS/JrHsdMcwi) rat using zinc-finger nuclease technology. After four weeks on an 8% NaCl diet, homozygous mutant rats had lower mean arterial (149 ± 9 mmHg vs. 178 ± 7 mmHg; P < 0.05) and systolic (180 ± 7 mmHg vs. 213 ± 8 mmHg; P < 0.05) blood pressure compared with WT littermates. Albumin and protein excretion rates were also significantly lower in mutant rats, demonstrating a renoprotective effect of the mutation. Total peripheral resistance and perivascular fibrosis in the heart and kidney were significantly reduced in Plekha7 mutant animals, suggesting a potential role of the vasculature in the attenuation of hypertension. Indeed, both flow-mediated dilation and endothelium-dependent vasodilation in response to acetylcholine were improved in isolated mesenteric resistance arteries of Plekha7 mutant rats compared with WT. These vascular improvements were correlated with changes in intracellular calcium handling, resulting in increased nitric oxide bioavailability in mutant vessels. Collectively, these data provide the first functional evidence that Plekha7 may contribute to blood pressure regulation and cardiovascular function through its effects on the vasculature.


Hypertension | 2012

Dahl Salt-Sensitive Rats Are Protected Against Vascular Defects Related to Diet-Induced Obesity

Andreas M. Beyer; Gábor Raffai; Brian D. Weinberg; Katherine Fredrich; Julian H. Lombard

Obesity increases plasma renin activity and angiotensin II levels, leading to vascular damage, elevated blood pressure, diabetes mellitus, and renal damage. Because genetic deletion of crucial parts of the renin-angiotensin system protect against obesity-related cardiovascular defects, we hypothesized that Dahl salt-sensitive (SS) rats, a model of chronically low plasma renin activity and angiotensin II levels, would be protected against vascular defects during diet-induced obesity compared with SS.13BN consomic rats showing normal renin-angiotensin system regulation. We evaluated vascular function in middle cerebral arteries of SS or SS.13BN rats fed high-fat (45% kcal from fat) versus normal-fat diet for 15 to 20 weeks from weaning. Endothelium-dependent relaxation in response to acetylcholine (10−8 to 10−4 mol/L) was restored in middle cerebral arteries of high-fat SS rats versus normal-fat diet controls, whereas vasodilation to acetylcholine was dramatically reduced in high-fat SS 13BN rats versus normal-fat diet controls. These findings support the hypothesis that physiological levels of angiotensin II play an important role in maintaining normal vascular relaxation in cerebral arteries and suggest that the cerebral vasculature of the SS rat model is genetically protected against endothelial dysfunction in diet-induced obesity.


Microvascular Research | 2013

Reduced angiotensin II levels cause generalized vascular dysfunction via oxidant stress in hamster cheek pouch arterioles

Jessica R. C. Priestley; Matthew Buelow; Scott T. McEwen; Brian D. Weinberg; Melanie Delaney; Sarah F. Balus; Carlyn Hoeppner; Lynn Dondlinger; Julian H. Lombard

OBJECTIVES We investigated the effect of suppressing plasma angiotensin II (ANG II) levels on arteriolar relaxation in the hamster cheek pouch. METHODS Arteriolar diameters were measured via television microscopy during short-term (3-6days) high salt (HS; 4% NaCl) diet and angiotensin converting enzyme (ACE) inhibition with captopril (100mg/kg/day). RESULTS ACE inhibition and/or HS diet eliminated endothelium-dependent arteriolar dilation to acetylcholine, endothelium-independent dilation to the NO donor sodium nitroprusside, the prostacyclin analogs carbacyclin and iloprost, and the KATP channel opener cromakalim; and eliminated arteriolar constriction during KATP channel blockade with glibenclamide. Scavenging of superoxide radicals and low dose ANG II infusion (25ng/kg/min, subcutaneous) reduced oxidant stress and restored arteriolar dilation in arterioles of HS-fed hamsters. Vasoconstriction to topically-applied ANG II was unaffected by HS diet while arteriolar responses to elevation of superfusion solution PO2 were unaffected (5% O2, 10% O2) or reduced (21% O2) by HS diet. CONCLUSIONS These findings indicate that sustained exposure to low levels of circulating ANG II leads to widespread dysfunction in endothelium-dependent and independent vascular relaxation mechanisms in cheek pouch arterioles by increasing vascular oxidant stress, but does not potentiate O2- or ANG II-induced constriction of arterioles in the distal microcirculation of normotensive hamsters.


Microcirculation | 2010

Modulation by Cytochrome P450-4A ω-Hydroxylase Enzymes of Adrenergic Vasoconstriction and Response to Reduced PO2 in Mesenteric Resistance Arteries of Dahl Salt-Sensitive Rats

Gábor Raffai; Jingli Wang; Richard J. Roman; Siddam Anjaiah; Brian D. Weinberg; John R. Falck; Julian H. Lombard

Please cite this paper as: Raffai, Wang, Roman, Anjaiah, Weinberg, Falck and Lombard (2010). Modulation by Cytochrome P450‐4A ω‐Hydroxylase Enzymes of Adrenergic Vasoconstriction and Response to Reduced PO2 in Mesenteric Resistance Arteries of Dahl Salt‐Sensitive Rats. Microcirculation17(7), 525–535.


American Journal of Hypertension | 2010

Restoration of Cerebral Vascular Relaxation in Renin Congenic Rats by Introgression of the Dahl R Renin Gene

Brian D. Weinberg; Andrew S. Greene; Julian H. Lombard

BACKGROUND This study determined whether transfer of the renin gene from the Dahl salt-resistant (Dahl R) strain into the Dahl salt-sensitive (SS) genetic background restores the relaxation of middle cerebral arteries (MCAs) to different vasodilator stimuli in S/renRR renin congenic (SS.SR-(D13N1 and Syt2)/Mcwi) (RGRR) rats maintained on low-salt (0.4% NaCl) diet. METHODS Responses to vasodilator stimuli were evaluated in isolated MCA from SS (Dahl SS/Jr/Hsd/MCWi), RGRR rats, and Dahl R rats. RESULTS MCA from SS rats failed to dilate in response to acetylcholine (ACh; 10(-6) mol/l), hypoxia (PO2 reduction to 40-45 mm Hg), and iloprost (10(-11) g/ml). ACh- and hypoxia-induced dilations were present in Dahl R rats and restored in RGRR rats. MCA from RGRR and SS constricted in response to iloprost, whereas MCA from Dahl R rats dilated in response to iloprost. MCA from SS, RGRR, and Dahl R rats exhibited similar dilations in response to cholera toxin (10(-9) g/ml) and dialated in response to the nitric oxide (NO) donor DEA-NONOate (10(-5) mol/l). CONCLUSIONS (i) Restoration of normal regulation of the renin-angiotensin system restores dilations to ACh and hypoxia that are impaired in SS rats, (ii) prostacyclin signaling is impaired in SS and RGRR rats but intact in Dahl R rats, indicating that alleles other than the renin gene affect vascular relaxation in response to this agonist; and (iii) vascular smooth muscle sensitivity to NO is preserved in SS and RGRR and is not responsible for impaired arterial relaxation in response to ACh in SS rats.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Amelioration of salt-induced vascular dysfunction in mesenteric arteries of Dahl salt-sensitive rats by missense mutation of extracellular superoxide dismutase

Andreas M. Beyer; Gábor Raffai; Brian D. Weinberg; Katherine Fredrich; Matthew S. Rodgers; Aron M. Geurts; Howard J. Jacob; Melinda R. Dwinell; Julian H. Lombard

Superoxide dismutase (SOD) enzymes, including extracellular SOD (ecSOD), are important for scavenging superoxide radicals (O2(·-)) in the vasculature. This study investigated vascular control in rats [SS-Sod(3m1Mcwi) (ecSOD(E124D))] with a missense mutation that alters a single amino acid (E124D) of ecSOD that produces a malfunctioning protein in the salt-sensitive (Dahl SS) genetic background. We hypothesized that this mutation would exacerbate endothelial dysfunction due to elevated vascular O2(·-) levels in SS, even under normal salt (NS; 0.4% NaCl) conditions. Aortas of ecSOD(E124D) rats fed standard rodent chow showed enhanced sensitivity to phenylephrine and reduced relaxation to acetylcholine (ACh) vs. SS rats. Endothelium-dependent dilation to ACh was unaffected by the mutation in small mesenteric arteries of ecSOD(E124D) rats fed NS diet, and mesenteric arteries of ecSOD(E124D) rats were protected from endothelial dysfunction during short-term (3-5 days) high-salt (HS; 4% NaCl) diet. ACh-induced dilation of mesenteric arteries of ecSOD(E124D) rats and SS rats fed NS diet was inhibited by N(G)-nitro-l-arginine methyl ester and/or by H2O2 scavenging with polyethylene glycol-catalase at higher concentrations of ACh. Total SOD activity was significantly higher in ecSOD(E124D) rats vs. SS controls fed HS diet, most likely reflecting a compensatory response to loss of a functional ecSOD isoform. These findings indicate that, contrary to its effect in the aorta, this missense mutation of ecSOD in the SS rat genome has no negative effect on vascular function in small resistance arteries, but instead protects against salt-induced endothelial dysfunction, most likely via compensatory mechanisms involving an increase in total SOD activity.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Vascular dysfunction precedes hypertension associated with a blood pressure locus on rat chromosome 12

Sasha Z. Prisco; Jessica R. C. Priestley; Brian D. Weinberg; Anthony R. Prisco; Matthew J. Hoffman; Howard J. Jacob; Michael J. Flister; Julian H. Lombard; Jozef Lazar

We previously isolated a 6.1-Mb region of SS/Mcwi (Dahl salt-sensitive) rat chromosome 12 (13.4-19.5 Mb) that significantly elevated blood pressure (BP) (Δ+34 mmHg, P < 0.001) compared with the SS-12(BN) consomic control. In the present study, we examined the role of vascular dysfunction and remodeling in hypertension risk associated with the 6.1-Mb (13.4-19.5 Mb) locus on rat chromosome 12 by reducing dietary salt, which lowered BP levels so that there were no substantial differences in BP between strains. Consequently, any observed differences in the vasculature were considered BP-independent. We also reduced the candidate region from 6.1 Mb with 133 genes to 2 Mb with 23 genes by congenic mapping. Both the 2 Mb and 6.1 Mb congenic intervals were associated with hypercontractility and decreased elasticity of resistance vasculature prior to elevations of BP, suggesting that the vascular remodeling and dysfunction likely contribute to the pathogenesis of hypertension in these congenic models. Of the 23 genes within the narrowed congenic interval, 12 were differentially expressed between the resistance vasculature of the 2 Mb congenic and SS-12(BN) consomic strains. Among these, Grifin was consistently upregulated 2.7 ± 0.6-fold (P < 0.05) and 2.0 ± 0.3-fold (P < 0.01), and Chst12 was consistently downregulated -2.8 ± 0.3-fold (P < 0.01) and -4.4 ± 0.4-fold (P < 0.00001) in the 2 Mb congenic compared with SS-12(BN) consomic under normotensive and hypertensive conditions, respectively. A syntenic region on human chromosome 7 has also been associated with BP regulation, suggesting that identification of the genetic mechanism(s) underlying cardiovascular phenotypes in this congenic strain will likely be translated to a better understanding of human hypertension.


The FASEB Journal | 2015

Salt-Induced Oxidant Stress in Sprague-Dawley (S-D) Rats with a Deletion Mutation of the Nrf2 Gene

Julian H. Lombard; Katie Kautenberg; Jessica R. C. Priestley; Brian D. Weinberg; Marc Casati; Bradley T. Endres; Aron M. Geurts


The FASEB Journal | 2014

Nrf2 mutation eliminates vasoprotective effects of low dose angiotensin II infusion in Sprague-Dawley rats fed high salt diet (664.12)

Jessica R. C. Priestley; Brian D. Weinberg; Aron M. Geurts; Julian H. Lombard

Collaboration


Dive into the Brian D. Weinberg's collaboration.

Top Co-Authors

Avatar

Julian H. Lombard

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aron M. Geurts

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Howard J. Jacob

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Andreas M. Beyer

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Katherine Fredrich

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Michael J. Flister

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Anthony R. Prisco

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Bradley T. Endres

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge