Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aron M. Geurts is active.

Publication


Featured researches published by Aron M. Geurts.


Science | 2009

Knockout Rats via Embryo Microinjection of Zinc-Finger Nucleases

Aron M. Geurts; Gregory J. Cost; Yevgeniy Freyvert; Bryan Zeitler; Jeffrey C. Miller; Vivian M. Choi; Shirin S. Jenkins; Adam Wood; Xiaoxia Cui; Xiangdong Meng; Anna I Vincent; Stephen Lam; Mieczyslaw Michalkiewicz; Rebecca Schilling; Jamie Foeckler; Shawn Kalloway; Hartmut Weiler; Séverine Ménoret; Ignacio Anegon; Gregory D. Davis; Lei Zhang; Edward J. Rebar; Philip D. Gregory; Fyodor D. Urnov; Howard J. Jacob; Roland Buelow

Targeted gene disruption in rats paves the way for new human disease models. The toolbox of rat genetics currently lacks the ability to introduce site-directed, heritable mutations into the genome to create knockout animals. By using engineered zinc-finger nucleases (ZFNs) designed to target an integrated reporter and two endogenous rat genes, Immunoglobulin M (IgM) and Rab38, we demonstrate that a single injection of DNA or messenger RNA encoding ZFNs into the one-cell rat embryo leads to a high frequency of animals carrying 25 to 100% disruption at the target locus. These mutations are faithfully and efficiently transmitted through the germline. Our data demonstrate the feasibility of targeted gene disruption in multiple rat strains within 4 months time, paving the way to a humanized monoclonal antibody platform and additional human disease models.


Molecular Therapy | 2003

Gene transfer into genomes of human cells by the sleeping beauty transposon system.

Aron M. Geurts; Ying Yang; Karl J. Clark; Geyi Liu; Zongbin Cui; Adam J. Dupuy; Jason B. Bell; David A. Largaespada; Perry B. Hackett

The Sleeping Beauty (SB) transposon system, derived from teleost fish sequences, is extremely effective at delivering DNA to vertebrate genomes, including those of humans. We have examined several parameters of the SB system to improve it as a potential, nonviral vector for gene therapy. Our investigation centered on three features: the carrying capacity of the transposon for efficient integration into chromosomes of HeLa cells, the effects of overexpression of the SB transposase gene on transposition rates, and improvements in the activity of SB transposase to increase insertion rates of transgenes into cellular chromosomes. We found that SB transposons of about 6 kb retained 50% of the maximal efficiency of transposition, which is sufficient to deliver 70-80% of identified human cDNAs with appropriate transcriptional regulatory sequences. Overexpression inhibition studies revealed that there are optimal ratios of SB transposase to transposon for maximal rates of transposition, suggesting that conditions of delivery of the two-part transposon system are important for the best gene-transfer efficiencies. We further refined the SB transposase to incorporate several amino acid substitutions, the result of which led to an improved transposase called SB11. With SB11 we are able to achieve transposition rates that are about 100-fold above those achieved with plasmids that insert into chromosomes by random recombination. With the recently described improvements to the transposon itself, the SB system appears to be a potential gene-transfer tool for human gene therapy.


Nature Genetics | 2008

Progress and prospects in rat genetics: a community view

Timothy J. Aitman; John K. Critser; Edwin Cuppen; Anna F. Dominiczak; Xosé M. Fernández-Suárez; Jonathan Flint; Dominique Gauguier; Aron M. Geurts; Michael N. Gould; Peter C. Harris; Rikard Holmdahl; Norbert Hubner; Zsuzsanna Izsvák; Howard J. Jacob; Takashi Kuramoto; Anne E. Kwitek; Anna Marrone; Tomoji Mashimo; Carol Moreno; John J. Mullins; Linda J. Mullins; Tomas Olsson; Michal Pravenec; Lela K. Riley; Kathrin Saar; Tadao Serikawa; James D Shull; Claude Szpirer; Simon N. Twigger; Birger Voigt

The rat is an important system for modeling human disease. Four years ago, the rich 150-year history of rat research was transformed by the sequencing of the rat genome, ushering in an era of exceptional opportunity for identifying genes and pathways underlying disease phenotypes. Genome-wide association studies in human populations have recently provided a direct approach for finding robust genetic associations in common diseases, but identifying the precise genes and their mechanisms of action remains problematic. In the context of significant progress in rat genomic resources over the past decade, we outline achievements in rat gene discovery to date, show how these findings have been translated to human disease, and document an increasing pace of discovery of new disease genes, pathways and mechanisms. Finally, we present a set of principles that justify continuing and strengthening genetic studies in the rat model, and further development of genomic infrastructure for rat research.


PLOS Genetics | 2005

Harnessing a high cargo-capacity transposon for genetic applications in vertebrates.

Darius Balciunas; Kirk J. Wangensteen; Andrew Wilber; Jason B. Bell; Aron M. Geurts; Sridhar Sivasubbu; Xinxin Wang; Perry B. Hackett; David A. Largaespada; R. Scott McIvor; Stephen C. Ekker

Viruses and transposons are efficient tools for permanently delivering foreign DNA into vertebrate genomes but exhibit diminished activity when cargo exceeds 8 kilobases (kb). This size restriction limits their molecular genetic and biotechnological utility, such as numerous therapeutically relevant genes that exceed 8 kb in size. Furthermore, a greater payload capacity vector would accommodate more sophisticated cis cargo designs to modulate the expression and mutagenic risk of these molecular therapeutics. We show that the Tol2 transposon can efficiently integrate DNA sequences larger than 10 kb into human cells. We characterize minimal sequences necessary for transposition (miniTol2) in vivo in zebrafish and in vitro in human cells. Both the 8.5-kb Tol2 transposon and 5.8-kb miniTol2 engineered elements readily function to revert the deficiency of fumarylacetoacetate hydrolase in an animal model of hereditary tyrosinemia type 1. Together, Tol2 provides a novel nonviral vector for the delivery of large genetic payloads for gene therapy and other transgenic applications.


Journal of Molecular Biology | 2002

Structure-Function Analysis of the Inverted Terminal Repeats of the Sleeping Beauty Transposon

Zongbin Cui; Aron M. Geurts; Geyi Liu; Christopher D. Kaufman; Perry B. Hackett

Translocation of Sleeping Beauty (SB) transposon requires specific binding of SB transposase to inverted terminal repeats (ITRs) of about 230 bp at each end of the transposon, which is followed by a cut-and-paste transfer of the transposon into a target DNA sequence. The ITRs contain two imperfect direct repeats (DRs) of about 32 bp. The outer DRs are at the extreme ends of the transposon whereas the inner DRs are located inside the transposon, 165-166 bp from the outer DRs. Here we investigated the roles of the DR elements in transposition. Although there is a core transposase-binding sequence common to all of the DRs, additional adjacent sequences are required for transposition and these sequences vary in the different DRs. As a result, SB transposase binds less tightly to the outer DRs than to the inner DRs. Two DRs are required in each ITR for transposition but they are not interchangeable for efficient transposition. Each DR appears to have a distinctive role in transposition. The spacing and sequence between the DR elements in an ITR affect transposition rates, suggesting a constrained geometry is involved in the interactions of SB transposase molecules in order to achieve precise mobilization. Transposons are flanked by TA dinucleotide base-pairs that are important for excision; elimination of the TA motif on one side of the transposon significantly reduces transposition while loss of TAs on both flanks of the transposon abolishes transposition. These findings have led to the construction of a more advanced transposon that should be useful in gene transfer and insertional mutagenesis in vertebrates.


Trends in Genetics | 2010

Gene targeting in the rat: advances and opportunities

Howard J. Jacob; Jozef Lazar; Melinda R. Dwinell; Carol Moreno; Aron M. Geurts

The rat has long been a model favored by physiologists, pharmacologists and neuroscientists. However, over the past two decades, many investigators in these fields have turned to the mouse because of its gene modification technologies and extensive genomic resources. Although the genomic resources of the rat have nearly caught up, gene targeting has lagged far behind, limiting the value of the rat for many investigators. In the past two years, advances in transposon- and zinc finger nuclease (ZFN)-mediated gene knockout as well as the establishment and culturing of embryonic and inducible pluripotent stem cells have created new opportunities for rat genetic research. Here, we provide a high-level description and the potential uses of these new technologies for investigators using the rat for biomedical research.


Methods of Molecular Biology | 2010

Generation of Gene-Specific Mutated Rats Using Zinc-Finger Nucleases

Aron M. Geurts; Gregory J. Cost; Séverine Rémy; Xiaoxia Cui; Laurent Tesson; Claire Usal; Séverine Ménoret; Howard J. Jacob; Ignacio Anegon; Roland Buelow

The genetic dissection of physiological and pathological traits in laboratory model organisms is accelerated by the ability to engineer loss-of-function mutations at investigator-specified loci. This chapter describes the use of zinc-finger nucleases (ZFNs) for the targeted disruption of endogenous rat genes directly in the embryo. ZFNs can specifically disrupt target genes in cultured rat cells and in embryos from inbred and outbred strains, leading to permanently genetically modified animals. This technology allows for the rapid, targeted modification of the rat genome.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

GENETIC MUTATION OF RECOMBINATION ACTIVATING GENE 1 IN DAHL SALT-SENSITIVE RATS ATTENUATES HYPERTENSION AND RENAL DAMAGE

David L. Mattson; Hayley Lund; Chuanling Guo; Nathan Rudemiller; Aron M. Geurts; Howard J. Jacob

Hypertension and renal damage in Dahl SS rats are associated with increased infiltrating immune cells in the kidney. To examine the role of infiltrating immune cells in this disease process, a zinc finger nuclease targeting bases 672-706 of recombination-activating gene 1 (Rag1) was injected into the pronucleus of Dahl SS (SS/JrHsdMcwi) strain embryos and implanted in pseudopregnant females. This strategy yielded a rat strain with a 13-base frame-shift mutation in the target region of Rag1 and a deletion of immunoreactive Rag1 protein in the thymus. Flow cytometry demonstrated that the Rag1-null mutant rats have a significant reduction in T and B lymphocytes in the circulation and spleen. Studies were performed on SS and Rag1-null rats fed a 4.0% NaCl diet for 3 wk. The infiltration of T cells into the kidney following high-salt intake was significantly blunted in the Rag1-null rats (1.7 ± 0.6 × 10(5) cells/kidney) compared with the Dahl SS (5.6 ± 0.9 × 10(5) cells/kidney). Accompanying the reduction in infiltration of immune cells in the kidney, mean arterial blood pressure and urinary albumin excretion rate were significantly lower in Rag1-null mutants (158 ± 3 mmHg and 60 ± 16 mg/day, respectively) than in SS rats (180 ± 11 mmHg and 251 ± 37 mg/day). Finally, a histological analysis revealed that the glomerular and tubular damage in the kidneys of the SS rats fed a high-salt diet was also attenuated in the Rag1 mutants. These studies demonstrate the importance of renal infiltration of immune cells in the pathogenesis of hypertension and renal damage in Dahl SS rats.


Mammalian Genome | 2007

Generation of rat mutants using a coat color-tagged Sleeping Beauty transposon system

Baisong Lu; Aron M. Geurts; Christophe Poirier; Deborah C. Petit; Wilbur R. Harrison; Paul A. Overbeek; Colin E. Bishop

A significant barrier to exploiting the full potential of the rat as a biomedical model is the lack of tools to easily modify its germline. Here we show that a tyrosinase-tagged Sleeping Beauty transposon can be used as a simple, efficient method to generate rat mutants in vivo. By making two lines of transgenic rats, one carrying the transposon and another expressing the transposase in germ cells, we are able to obtain bigenic males in which transposition occurs in the germ cells. We show that transposition leads to the appearance of new coat colors in the offspring. Using such bigenic males, we obtained an average of 1.2 transpositions per gamete and identified 19 intragenic integration events among 96 transposition sites that were sequenced. In addition, gene trapping was confirmed and rats with evidence for transposon-induced dominant ocular anomalies were identified. These data suggest that the modified Sleeping Beauty transposon represents a powerful new tool for producing molecularly defined mutagenesis in the rat.


Genetics | 2015

Efficient CRISPR/Cas9-Mediated Genome Editing in Mice by Zygote Electroporation of Nuclease

Wenning Qin; Stephanie L. Dion; Peter M. Kutny; Yingfan Zhang; Albert W. Cheng; Nathaniel Jillette; Ankit Malhotra; Aron M. Geurts; Yi-Guang Chen; Haoyi Wang

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system is an adaptive immune system in bacteria and archaea that has recently been exploited for genome engineering. Mutant mice can be generated in one step through direct delivery of the CRISPR/Cas9 components into a mouse zygote. Although the technology is robust, delivery remains a bottleneck, as it involves manual injection of the components into the pronuclei or the cytoplasm of mouse zygotes, which is technically demanding and inherently low throughput. To overcome this limitation, we employed electroporation as a means to deliver the CRISPR/Cas9 components, including Cas9 messenger RNA, single-guide RNA, and donor oligonucleotide, into mouse zygotes and recovered live mice with targeted nonhomologous end joining and homology-directed repair mutations with high efficiency. Our results demonstrate that mice carrying CRISPR/Cas9-mediated targeted mutations can be obtained with high efficiency by zygote electroporation.

Collaboration


Dive into the Aron M. Geurts's collaboration.

Top Co-Authors

Avatar

Howard J. Jacob

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Jozef Lazar

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Oleg Palygin

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Bradley T. Endres

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Melinda R. Dwinell

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

David L. Mattson

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allen W. Cowley

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Carol Moreno

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge