Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian E. Nett is active.

Publication


Featured researches published by Brian E. Nett.


Physics in Medicine and Biology | 2009

Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms

Jie Tang; Brian E. Nett; Guang-Hong Chen

Of all available reconstruction methods, statistical iterative reconstruction algorithms appear particularly promising since they enable accurate physical noise modeling. The newly developed compressive sampling/compressed sensing (CS) algorithm has shown the potential to accurately reconstruct images from highly undersampled data. The CS algorithm can be implemented in the statistical reconstruction framework as well. In this study, we compared the performance of two standard statistical reconstruction algorithms (penalized weighted least squares and q-GGMRF) to the CS algorithm. In assessing the image quality using these iterative reconstructions, it is critical to utilize realistic background anatomy as the reconstruction results are object dependent. A cadaver head was scanned on a Varian Trilogy system at different dose levels. Several figures of merit including the relative root mean square error and a quality factor which accounts for the noise performance and the spatial resolution were introduced to objectively evaluate reconstruction performance. A comparison is presented between the three algorithms for a constant undersampling factor comparing different algorithms at several dose levels. To facilitate this comparison, the original CS method was formulated in the framework of the statistical image reconstruction algorithms. Important conclusions of the measurements from our studies are that (1) for realistic neuro-anatomy, over 100 projections are required to avoid streak artifacts in the reconstructed images even with CS reconstruction, (2) regardless of the algorithm employed, it is beneficial to distribute the total dose to more views as long as each view remains quantum noise limited and (3) the total variation-based CS method is not appropriate for very low dose levels because while it can mitigate streaking artifacts, the images exhibit patchy behavior, which is potentially harmful for medical diagnosis.


Physics in Medicine and Biology | 2004

Fan-beam and cone-beam image reconstruction via filtering the backprojection image of differentiated projection data

Tingliang Zhuang; Shuai Leng; Brian E. Nett; Guang-Hong Chen

In this paper, a new image reconstruction scheme is presented based on Tuys cone-beam inversion scheme and its fan-beam counterpart. It is demonstrated that Tuys inversion scheme may be used to derive a new framework for fanbeam and cone-beam image reconstruction. In this new framework, images are reconstructed via filtering the backprojection image of differentiated projection data. The new framework is mathematically exact and is applicable to a general source trajectory provided the Tuy data sufficiency condition is satisfied. By choosing a piece-wise constant function for one of the components in the factorized weighting function, the filtering kernel is one dimensional, viz. the filtering process is along a straight line. Thus, the derived image reconstruction algorithm is mathematically exact and efficient. In the cone-beam case, the derived reconstruction algorithm is applicable to a large class of source trajectories where the pi-lines or the generalized pi-lines exist. In addition, the new reconstruction scheme survives the super-short scan mode in both the fan-beam and cone-beam cases provided the data are not transversely truncated. Numerical simulations were conducted to validate the new reconstruction scheme for the fan-beam case.


IEEE Transactions on Medical Imaging | 2012

Time-Resolved Interventional Cardiac C-arm Cone-Beam CT: An Application of the PICCS Algorithm

Guang-Hong Chen; Pascal Thériault-Lauzier; Jie Tang; Brian E. Nett; Shuai Leng; Joseph Zambelli; Zhihua Qi; Nicholas Bevins; Amish N. Raval; Scott B. Reeder; Howard A. Rowley

Time-resolved cardiac imaging is particularly interesting in the interventional setting since it would provide both image guidance for accurate procedural planning and cardiac functional evaluations directly in the operating room. Imaging the heart in vivo using a slowly rotating C-arm system is extremely challenging due to the limitations of the data acquisition system and the high temporal resolution required to avoid motion artifacts. In this paper, a data acquisition scheme and an image reconstruction method are proposed to achieve time-resolved cardiac cone-beam computed tomography imaging with isotropic spatial resolution and high temporal resolution using a slowly rotating C-arm system. The data are acquired within 14 s using a single gantry rotation with a short scan angular range. The enabling image reconstruction method is the prior image constrained compressed sensing (PICCS) algorithm. The prior image is reconstructed from data acquired over all cardiac phases. Each cardiac phase is then reconstructed from the retrospectively gated cardiac data using the PICCS algorithm. To validate the method, several studies were performed. Both numerical simulations using a hybrid motion phantom with static background anatomy as well as physical phantom studies have been used to demonstrate that the proposed method enables accurate reconstruction of image objects with a high isotropic spatial resolution. A canine animal model scanned in vivo was used to further validate the method.


Physics in Medicine and Biology | 2010

Perfusion measurements by micro-CT using prior image constrained compressed sensing (PICCS): initial phantom results

Brian E. Nett; Robert Brauweiler; Willi A. Kalender; Howard A. Rowley; Guang-Hong Chen

Micro-CT scanning has become an accepted standard for anatomical imaging in small animal disease and genome mutation models. Concurrently, perfusion imaging via tracking contrast dynamics after injection of an iodinated contrast agent is a well-established tool for clinical CT scanners. However, perfusion imaging is not yet commercially available on the micro-CT platform due to limitations in both radiation dose and temporal resolution. Recent hardware developments in micro-CT scanners enable continuous imaging of a given volume through the use of a slip-ring gantry. Now that dynamic CT imaging is feasible, data may be acquired to measure tissue perfusion using a micro-CT scanner (CT Imaging, Erlangen, Germany). However, rapid imaging using micro-CT scanners leads to high image noise in individual time frames. Using the standard filtered backprojection (FBP) image reconstruction, images are prohibitively noisy for calculation of voxel-by-voxel perfusion maps. In this study, we apply prior image constrained compressed sensing (PICCS) to reconstruct images with significantly lower noise variance. In perfusion phantom experiments performed on a micro-CT scanner, the PICCS reconstruction enabled a reduction to 1/16 of the noise variance of standard FBP reconstruction, without compromising the spatial or temporal resolution. This enables a significant increase in dose efficiency, and thus, significantly less exposure time is needed to acquire images amenable to perfusion processing. This reduction in required irradiation time enables voxel-by-voxel perfusion maps to be generated on micro-CT scanners. Sample perfusion maps using a deconvolution-based perfusion analysis are included to demonstrate the improvement in image quality using the PICCS algorithm.


Physics in Medicine and Biology | 2009

Radiation dose reduction in time-resolved CT angiography using highly constrained back projection reconstruction

Mark Supanich; Yinghua Tao; Brian E. Nett; Kari Pulfer; Jiang Hsieh; Patrick A. Turski; Charles A. Mistretta; Howard A. Rowley; Guang-Hong Chen

Recently dynamic, time-resolved three-dimensional computed tomography angiography (CTA) has been introduced to the neurological imaging community. However, the radiation dose delivered to patients in time-resolved CTA protocol is a high and potential risk associated with the ionizing radiation dose. Thus, minimizing the radiation dose is highly desirable for time-resolved CTA. In order to reduce the radiation dose delivered during dynamic, contrast-enhanced CT applications, we introduce here the CT formulation of HighlY constrained back PRojection (HYPR) imaging. We explore the radiation dose reduction approaches of both acquiring a reduced number of projections for each image and lowering the tube current used during acquisition. We then apply HYPR image reconstruction to produce image sets at a reduced patient dose and with low image noise. Numerical phantom experiments and retrospective analysis of in vivo canine studies are used to assess the accuracy and quality of HYPR reduced dose image sets and validate our approach. Experimental results demonstrated that a factor of 6-8 times radiation dose reduction is possible when the HYPR algorithm is applied to time-resolved CTA exams.


Proceedings of SPIE--the International Society for Optical Engineering | 2008

Tomosynthesis via Total Variation Minimization Reconstruction and Prior Image Constrained Compressed Sensing (PICCS) on a C-arm System

Brian E. Nett; Jie Tang; Shuai Leng; Guang-Hong Chen

Recently, foundational mathematical theory, compressed sensing (CS), has been developed which enables accurate reconstruction from greatly undersampled frequency information (Candes et. al. and Donoho). Using numerical phantoms it has been demonstrated that CS reconstruction (e.g. minimizing the ℓ1 norm of the discrete gradient of the image) offers promise for computed tomography. However, when using experimental CT projection data the undersampling factors enabled were smaller than in numerical simulations. An extension to CS has recently been proposed wherein a prior image is utilized as a constraint in the image reconstruction procedure (i.e. Prior Image Constrained Compressed Sensing - PICCS). Experimental results are demonstrated here from a clinical C-arm system, highlighting one application of PICCS in reducing radiation exposure during interventional procedures while preserving high image quality. In this study a range of view angles has been investigated from very limited angle aquisitions (e.g. tomosythesis) to undersampled CT acquisitions.


Medical Imaging 2006: Physics of Medical Imaging | 2006

Design and development of C-arm based cone-beam CT for image-guided interventions : Initial results

Guang-Hong Chen; Joseph Zambelli; Brian E. Nett; Mark Supanich; Cyril Riddell; Barry Belanger; Charles A. Mistretta

X-ray cone-beam computed tomography (CBCT) is of importance in image-guided intervention (IGI) and image-guided radiation therapy (IGRT). In this paper, we present a cone-beam CT data acquisition system using a GE INNOVA 4100 (GE Healthcare Technologies, Waukesha, Wisconsin) clinical system. This new cone-beam data acquisition mode was developed for research purposes without interfering with any clinical function of the system. It provides us a basic imaging pipeline for more advanced cone-beam data acquisition methods. It also provides us a platform to study and overcome the limiting factors such as cone-beam artifacts and limiting low contrast resolution in current C-arm based cone-beam CT systems. A geometrical calibration method was developed to experimentally determine parameters of the scanning geometry to correct the image reconstruction for geometric non-idealities. Extensive phantom studies and some small animal studies have been conducted to evaluate the performance of our cone-beam CT data acquisition system.


Proceedings of SPIE | 2009

Low radiation dose C-arm cone-beam CT based on prior image constrained compressed sensing (PICCS): including compensation for image volume mismatch between multiple data acquisitions

Brian E. Nett; Jie Tang; Beverly Aagaard-Kienitz; Howard A. Rowley; Guang-Hong Chen

C-arm based cone-beam CT (CBCT) has evolved into a routine clinical imaging modality to provide threedimensional tomographic image guidance before, during, and after an interventional procedure. It is often used to update the clinician to the state of the patient anatomy and interventional tool placement. Due to the repeatedly use of CBCT, the accumulated radiation dose in an interventional procedure has become a concern. There is a strong desire from both patients and health care providers to reduce the radiation exposure required for these exams. The overall objective of this work is to propose and validate a method to significantly reduce the total radiation dose used during a CBCT image guided intervention. The basic concept is that the first cone-beam CT scan acquired at the full dose will be used to constrain the reconstruction of the later CBCT scans acquired at a much lower radiation dose. A recently developed new image reconstruction algorithm, Prior Image Constrained Compressed Sensing (PICCS), was used to reconstruct subsequent CBCT images with lower dose. This application differs from other applications of the PICCS algorithm, such as time-resolved CT or fourdimensional CBCT (4DCBCT), because the patient position may be frequently changed from one CBCT scan to another during the procedure. Thus, an image registration step to account for the change in patient position is indispensable for use of the PICCS image reconstruction algorithm. In this paper, the image registration step is combined with the PICCS algorithm to enable radiation dose reduction in CBCT image guided interventions. Experimental results acquired from a clinical C-arm system using a human cadaver were used to validate the PICCS algorithm based radiation dose reduction scheme. Using the proposed method in this paper, it has been demonstrated that, instead of 300 view angles, this technique requires about 20 cone-beam view angles to reconstruct CBCT angiograms. This signals a radiation dose reduction by a factor of approximately fifteen for subsequent acquisitions.


Physics in Medicine and Biology | 2005

Exact fan-beam image reconstruction algorithm for truncated projection data acquired from an asymmetric half-size detector

Shuai Leng; Tingliang Zhuang; Brian E. Nett; Guang-Hong Chen

In this paper, we present a new algorithm designed for a specific data truncation problem in fan-beam CT. We consider a scanning configuration in which the fan-beam projection data are acquired from an asymmetrically positioned half-sized detector. Namely, the asymmetric detector only covers one half of the scanning field of view. Thus, the acquired fan-beam projection data are truncated at every view angle. If an explicit data rebinning process is not invoked, this data acquisition configuration will reek havoc on many known fan-beam image reconstruction schemes including the standard filtered backprojection (FBP) algorithm and the super-short-scan FBP reconstruction algorithms. However, we demonstrate that a recently developed fan-beam image reconstruction algorithm which reconstructs an image via filtering a backprojection image of differentiated projection data (FBPD) survives the above fan-beam data truncation problem. Namely, we may exactly reconstruct the whole image object using the truncated data acquired in a full scan mode (2pi angular range). We may also exactly reconstruct a small region of interest (ROI) using the truncated projection data acquired in a short-scan mode (less than 2pi angular range). The most important characteristic of the proposed reconstruction scheme is that an explicit data rebinning process is not introduced. Numerical simulations were conducted to validate the new reconstruction algorithm.


Medical Physics | 2006

Development and evaluation of an exact fan-beam reconstruction algorithm using an equal weighting scheme via locally compensated filtered backprojection (LCFBP)

Guang-Hong Chen; Ranjini Tokalkanahalli; Tingliang Zhuang; Brian E. Nett; Jiang Hsieh

A novel exact fan-beam image reconstruction formula is presented and validated using both phantom data and clinical data. This algorithm takes the form of the standard ramp filtered backprojection (FBP) algorithm plus local compensation terms. This algorithm will be referred to as a locally compensated filtered backprojection (LCFBP). An equal weighting scheme is utilized in this algorithm in order to properly account for redundantly measured projection data. The algorithm has the desirable property of maintaining a mathematically exact result for: the full scan mode (2pi), the short scan mode (pi+ full fan angle), and the supershort scan mode [less than (pi+ full fan angle)]. Another desirable feature of this algorithm is that it is derivative-free. This feature is beneficial in preserving the spatial resolution of the reconstructed images. The third feature is that an equal weighting scheme has been utilized in the algorithm, thus the new algorithm has better noise properties than the standard filtered backprojection image reconstruction with a smooth weighting function. Both phantom data and clinical data were utilized to validate the algorithm and demonstrate the superior noise properties of the new algorithm.

Collaboration


Dive into the Brian E. Nett's collaboration.

Top Co-Authors

Avatar

Guang-Hong Chen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Zambelli

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jie Tang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Tingliang Zhuang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

G Chen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Howard A. Rowley

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Ranjini Tolakanahalli

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Charles A. Mistretta

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge