Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian E. Scheffler is active.

Publication


Featured researches published by Brian E. Scheffler.


Nature | 2012

Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres

Andrew H. Paterson; Jonathan F. Wendel; Heidrun Gundlach; Hui Guo; Jerry Jenkins; Dianchuan Jin; Danny J. Llewellyn; Kurtis C. Showmaker; Shengqiang Shu; Mi-jeong Yoo; Robert L. Byers; Wei Chen; Adi Doron-Faigenboim; Mary V. Duke; Lei Gong; Jane Grimwood; Corrinne E. Grover; Kara Grupp; Guanjing Hu; Tae-Ho Lee; Jingping Li; Lifeng Lin; Tao Liu; Barry S. Marler; Justin T. Page; Alison W. Roberts; Elisson Romanel; William S. Sanders; Emmanuel Szadkowski; Xu Tan

Polyploidy often confers emergent properties, such as the higher fibre productivity and quality of tetraploid cottons than diploid cottons bred for the same environments. Here we show that an abrupt five- to sixfold ploidy increase approximately 60 million years (Myr) ago, and allopolyploidy reuniting divergent Gossypium genomes approximately 1–2 Myr ago, conferred about 30–36-fold duplication of ancestral angiosperm (flowering plant) genes in elite cottons (Gossypium hirsutum and Gossypium barbadense), genetic complexity equalled only by Brassica among sequenced angiosperms. Nascent fibre evolution, before allopolyploidy, is elucidated by comparison of spinnable-fibred Gossypium herbaceum A and non-spinnable Gossypium longicalyx F genomes to one another and the outgroup D genome of non-spinnable Gossypium raimondii. The sequence of a G. hirsutum AtDt (in which ‘t’ indicates tetraploid) cultivar reveals many non-reciprocal DNA exchanges between subgenomes that may have contributed to phenotypic innovation and/or other emergent properties such as ecological adaptation by polyploids. Most DNA-level novelty in G. hirsutum recombines alleles from the D-genome progenitor native to its New World habitat and the Old World A-genome progenitor in which spinnable fibre evolved. Coordinated expression changes in proximal groups of functionally distinct genes, including a nuclear mitochondrial DNA block, may account for clusters of cotton-fibre quantitative trait loci affecting diverse traits. Opportunities abound for dissecting emergent properties of other polyploids, particularly angiosperms, by comparison to diploid progenitors and outgroups.


Nature Biotechnology | 2015

Sequencing of allotetraploid cotton ( Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement

Tianzhen Zhang; Yan Hu; Wenkai Jiang; Lei Fang; Xueying Guan; Jiedan Chen; Jinbo Zhang; Christopher A Saski; Brian E. Scheffler; David M. Stelly; Amanda M Hulse-Kemp; Qun Wan; Bingliang Liu; Chunxiao Liu; Sen Wang; Mengqiao Pan; Yangkun Wang; Dawei Wang; Wenxue Ye; Lijing Chang; Wenpan Zhang; Qingxin Song; Ryan C Kirkbride; Xiao-Ya Chen; Elizabeth S. Dennis; Danny J. Llewellyn; Daniel G. Peterson; Peggy Thaxton; D. Jones; Qiong Wang

Upland cotton is a model for polyploid crop domestication and transgenic improvement. Here we sequenced the allotetraploid Gossypium hirsutum L. acc. TM-1 genome by integrating whole-genome shotgun reads, bacterial artificial chromosome (BAC)-end sequences and genotype-by-sequencing genetic maps. We assembled and annotated 32,032 A-subgenome genes and 34,402 D-subgenome genes. Structural rearrangements, gene loss, disrupted genes and sequence divergence were more common in the A subgenome than in the D subgenome, suggesting asymmetric evolution. However, no genome-wide expression dominance was found between the subgenomes. Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenome. This draft genome sequence provides a resource for engineering superior cotton lines.


Plant Physiology | 2007

Toward Sequencing Cotton (Gossypium) Genomes

Z. Jeffrey Chen; Brian E. Scheffler; Elizabeth S. Dennis; Barbara A. Triplett; Tianzhen Zhang; Wangzhen Guo; Xiao-Ya Chen; David M. Stelly; Pablo D. Rabinowicz; Christopher D. Town; Tony Arioli; Curt L. Brubaker; Roy G. Cantrell; Jean Marc Lacape; Mauricio Ulloa; Peng Chee; Alan R. Gingle; Candace H. Haigler; Richard G. Percy; Sukumar Saha; Thea A. Wilkins; Robert J. Wright; Allen Van Deynze; Yuxian Zhu; Shuxun Yu; Ibrokhim Y. Abdurakhmonov; Ishwarappa S. Katageri; P. Ananda Kumar; Mehboob-ur-Rahman; Yusuf Zafar

Despite rapidly decreasing costs and innovative technologies, sequencing of angiosperm genomes is not yet undertaken lightly. Generating larger amounts of sequence data more quickly does not address the difficulties of sequencing and assembling complex genomes de novo. The cotton ( Gossypium spp.)


Nature Genetics | 2016

The genome sequences of Arachis duranensis and Arachis ipaensis , the diploid ancestors of cultivated peanut

David J. Bertioli; Steven B. Cannon; Lutz Froenicke; Guodong Huang; Andrew D. Farmer; Ethalinda K. S. Cannon; Xin Liu; Dongying Gao; Josh Clevenger; Sudhansu Dash; Longhui Ren; Márcio C. Moretzsohn; Kenta Shirasawa; Wei Huang; Bruna Vidigal; Brian Abernathy; Ye Chu; Chad E. Niederhuth; Pooja E. Umale; Ana Claudia Guerra Araujo; Alexander Kozik; Kyung Do Kim; Mark D. Burow; Rajeev K. Varshney; Xingjun Wang; Xinyou Zhang; Noelle A. Barkley; Patricia M. Guimarães; Sachiko Isobe; Baozhu Guo

Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ∼2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (Arachis duranensis and Arachis ipaensis). We show that these genomes are similar to cultivated peanuts A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanuts subgenomes. On the basis of remarkably high DNA identity of the A. ipaensis genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that A. ipaensis may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut.


Phytochemistry | 2002

The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase.

Giovanni Meazza; Brian E. Scheffler; Mario R. Tellez; Agnes M. Rimando; Joanne G. Romagni; Stephen O. Duke; Dhammika Nanayakkara; Ikhlas A. Khan; Ehab A. Abourashed; Franck E. Dayan

The inhibitory activity of 34 natural products of various structural classes on hydroxyphenylpyruvate dioxygenase (HPPD), the target site for triketone herbicides, and the mode of interaction of selected natural products were investigated. Recombinant HPPD from arabidopsis is sensitive to several classes of natural compounds including, in decreasing order of sensitivity, triketones, benzoquinones, naphthoquinones and anthraquinones. The triketone natural products acted as competitive tight-binding inhibitors, whereas the benzoquinones and naphthoquinones did not appear to bind tightly to HPPD. While these natural products may not have optimal structural features required for in vivo herbicidal activity, the differences in their kinetic behavior suggest that novel classes of HPPD inhibitors may be developed based on their structural backbones.


BMC Plant Biology | 2010

Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.)

Wonkeun Park; Brian E. Scheffler; Philip J. Bauer; B. Todd Campbell

BackgroundCotton (Gossypium spp.) is produced in over 30 countries and represents the most important natural fiber in the world. One of the primary factors affecting both the quantity and quality of cotton production is water. A major facilitator of water movement through cell membranes of cotton and other plants are the aquaporin proteins. Aquaporin proteins are present as diverse forms in plants, where they function as transport systems for water and other small molecules. The plant aquaporins belong to the large major intrinsic protein (MIP) family. In higher plants, they consist of five subfamilies including plasma membrane intrinsic proteins (PIP), tonoplast intrinsic proteins (TIP), NOD26-like intrinsic proteins (NIP), small basic intrinsic proteins (SIP), and the recently discovered X intrinsic proteins (XIP). Although a great deal is known about aquaporins in plants, very little is known in cotton.ResultsFrom a molecular cloning effort, together with a bioinformatic homology search, 71 upland cotton (G. hirsutum) aquaporin genes were identified. The cotton aquaporins consist of 28 PIP and 23 TIP members with high sequence similarity. We also identified 12 NIP and 7 SIP members that showed more divergence. In addition, one XIP member was identified that formed a distinct 5th subfamily. To explore the physiological roles of these aquaporin genes in cotton, expression analyses were performed for a select set of aquaporin genes from each subfamily using semi-quantitative reverse transcription (RT)-PCR. Our results suggest that many cotton aquaporin genes have high sequence similarity and diverse roles as evidenced by analysis of sequences and their expression.ConclusionThis study presents a comprehensive identification of 71 cotton aquaporin genes. Phylogenetic analysis of amino acid sequences divided the large and highly similar multi-gene family into the known 5 aquaporin subfamilies. Together with expression and bioinformatic analyses, our results support the idea that the genes identified in this study represent an important genetic resource providing potential targets to modify the water use properties of cotton.


BMC Genomics | 2006

CMD: a Cotton Microsatellite Database resource for Gossypium genomics

Anna Blenda; Jodi A. Scheffler; Brian E. Scheffler; Michael Palmer; Jean-Marc Lacape; John Z. Yu; Christopher Jesudurai; Sook Jung; Sriram Muthukumar; Preetham Yellambalase; Stephen P. Ficklin; Margaret Staton; Robert Eshelman; Mauricio Ulloa; Sukumar Saha; Benjamin Burr; Shaolin Liu; Tianzhen Zhang; Deqiu Fang; Alan E. Pepper; Siva P. Kumpatla; John Jacobs; Jeffery P. Tomkins; Roy G. Cantrell; Dorrie Main

BackgroundThe Cotton Microsatellite Database (CMD) http://www.cottonssr.org is a curated and integrated web-based relational database providing centralized access to publicly available cotton microsatellites, an invaluable resource for basic and applied research in cotton breeding.DescriptionAt present CMD contains publication, sequence, primer, mapping and homology data for nine major cotton microsatellite projects, collectively representing 5,484 microsatellites. In addition, CMD displays data for three of the microsatellite projects that have been screened against a panel of core germplasm. The standardized panel consists of 12 diverse genotypes including genetic standards, mapping parents, BAC donors, subgenome representatives, unique breeding lines, exotic introgression sources, and contemporary Upland cottons with significant acreage. A suite of online microsatellite data mining tools are accessible at CMD. These include an SSR server which identifies microsatellites, primers, open reading frames, and GC-content of uploaded sequences; BLAST and FASTA servers providing sequence similarity searches against the existing cotton SSR sequences and primers, a CAP3 server to assemble EST sequences into longer transcripts prior to mining for SSRs, and CMap, a viewer for comparing cotton SSR maps.ConclusionThe collection of publicly available cotton SSR markers in a centralized, readily accessible and curated web-enabled database provides a more efficient utilization of microsatellite resources and will help accelerate basic and applied research in molecular breeding and genetic mapping in Gossypium spp.


Genome Biology | 2013

The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color

Juan Carlos Motamayor; Keithanne Mockaitis; Jeremy Schmutz; Niina Haiminen; Donald Livingstone; Omar E. Cornejo; Seth D. Findley; Ping Zheng; Filippo Utro; Stefan Royaert; Christopher A. Saski; Jerry Jenkins; Ram Podicheti; Meixia Zhao; Brian E. Scheffler; Joseph C Stack; Frank Alex Feltus; Guiliana Mustiga; Freddy Amores; Wilbert Phillips; Jean Philippe Marelli; Gregory D. May; Howard Shapiro; Jianxin Ma; Carlos Bustamante; Raymond J. Schnell; Dorrie Main; Don Gilbert; Laxmi Parida; David N. Kuhn

BackgroundTheobroma cacao L. cultivar Matina 1-6 belongs to the most cultivated cacao type. The availability of its genome sequence and methods for identifying genes responsible for important cacao traits will aid cacao researchers and breeders.ResultsWe describe the sequencing and assembly of the genome of Theobroma cacao L. cultivar Matina1-6. The genome of the Matina 1-6 cultivar is 445 Mbp, which is significantly larger than a sequenced Criollo cultivar, and more typical of other cultivars. The chromosome-scale assembly, version 1.1, contains 711 scaffolds covering 346.0 Mbp, with a contig N50 of 84.4 kbp, a scaffold N50 of 34.4 Mbp, and an evidence-based gene set of 29,408 loci. Version 1.1 has 10x the scaffold N50 and 4x the contig N50 as Criollo, and includes 111 Mb more anchored sequence. The version 1.1 assembly has 4.4% gap sequence, while Criollo has 10.9%. Through a combination of haplotype, association mapping and gene expression analyses, we leverage this robust reference genome to identify a promising candidate gene responsible for pod color variation. We demonstrate that green/red pod color in cacao is likely regulated by the R2R3 MYB transcription factor TcMYB113, homologs of which determine pigmentation in Rosaceae, Solanaceae, and Brassicaceae. One SNP within the target site for a highly conserved trans-acting siRNA in dicots, found within TcMYB113, seems to affect transcript levels of this gene and therefore pod color variation.ConclusionsWe report a high-quality sequence and annotation of Theobroma cacao L. and demonstrate its utility in identifying candidate genes regulating traits.


Molecular Ecology | 2004

Somatic mutation‐mediated evolution of herbicide resistance in the nonindigenous invasive plant hydrilla (Hydrilla verticillata)

Albrecht Michel; Renée S. Arias; Brian E. Scheffler; Stephen O. Duke; Michael D. Netherland; Franck E. Dayan

Hydrilla (Hydrilla verticillata L.f. Royle) was introduced to the surface water of Florida in the 1950s and is today one of the most serious aquatic weed problems in the USA. As a result of concerns associated with the applications of pesticides to aquatic systems, fluridone is the only USEPA‐approved chemical that provides systemic control of hydrilla. After a decrease in fluridones efficacy at controlling hydrilla, 200 Florida water bodies were sampled to determine the extent of the problem and the biological basis for the reduced efficacy. Our studies revealed that hydrilla phenotypes with two‐ to six‐fold higher fluridone resistance were present in 20 water bodies. Since fluridone is an inhibitor of the enzyme phytoene desaturase (PDS), the gene for PDS (pds) was cloned from herbicide‐susceptible and ‐resistant hydrilla plants. We report for the first time in higher plants three independent herbicide‐resistant hydrilla biotypes arising from the selection of somatic mutations at the arginine 304 codon of pds. The three PDS variants had specific activities similar to the wild‐type enzyme but were two to five times less sensitive to fluridone. In vitro activity levels of the enzymes correlated with in vivo resistance of the corresponding biotypes. As hydrilla spread rapidly to lakes across the southern United States in the past, the expansion of resistant biotypes is likely to pose significant environmental challenges in the future.


Virology Journal | 2010

Metagenomic analysis of the turkey gut RNA virus community

J. Michael Day; Linda L Ballard; Mary V. Duke; Brian E. Scheffler; Laszlo Zsak

Viral enteric disease is an ongoing economic burden to poultry producers worldwide, and despite considerable research, no single virus has emerged as a likely causative agent and target for prevention and control efforts. Historically, electron microscopy has been used to identify suspect viruses, with many small, round viruses eluding classification based solely on morphology. National and regional surveys using molecular diagnostics have revealed that suspect viruses continuously circulate in United States poultry, with many viruses appearing concomitantly and in healthy birds. High-throughput nucleic acid pyrosequencing is a powerful diagnostic technology capable of determining the full genomic repertoire present in a complex environmental sample. We utilized the Roche/454 Life Sciences GS-FLX platform to compile an RNA virus metagenome from turkey flocks experiencing enteric disease. This approach yielded numerous sequences homologous to viruses in the BLAST nr protein database, many of which have not been described in turkeys. Our analysis of this turkey gut RNA metagenome focuses in particular on the turkey-origin members of the Picornavirales, the Caliciviridae, and the turkey Picobirnaviruses.

Collaboration


Dive into the Brian E. Scheffler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy A. Rinehart

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Franck E. Dayan

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Stephen O. Duke

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar

Renée S. Arias

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Jodi A. Scheffler

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sukumar Saha

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge