Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jodi A. Scheffler is active.

Publication


Featured researches published by Jodi A. Scheffler.


Nature | 2012

Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres

Andrew H. Paterson; Jonathan F. Wendel; Heidrun Gundlach; Hui Guo; Jerry Jenkins; Dianchuan Jin; Danny J. Llewellyn; Kurtis C. Showmaker; Shengqiang Shu; Mi-jeong Yoo; Robert L. Byers; Wei Chen; Adi Doron-Faigenboim; Mary V. Duke; Lei Gong; Jane Grimwood; Corrinne E. Grover; Kara Grupp; Guanjing Hu; Tae-Ho Lee; Jingping Li; Lifeng Lin; Tao Liu; Barry S. Marler; Justin T. Page; Alison W. Roberts; Elisson Romanel; William S. Sanders; Emmanuel Szadkowski; Xu Tan

Polyploidy often confers emergent properties, such as the higher fibre productivity and quality of tetraploid cottons than diploid cottons bred for the same environments. Here we show that an abrupt five- to sixfold ploidy increase approximately 60 million years (Myr) ago, and allopolyploidy reuniting divergent Gossypium genomes approximately 1–2 Myr ago, conferred about 30–36-fold duplication of ancestral angiosperm (flowering plant) genes in elite cottons (Gossypium hirsutum and Gossypium barbadense), genetic complexity equalled only by Brassica among sequenced angiosperms. Nascent fibre evolution, before allopolyploidy, is elucidated by comparison of spinnable-fibred Gossypium herbaceum A and non-spinnable Gossypium longicalyx F genomes to one another and the outgroup D genome of non-spinnable Gossypium raimondii. The sequence of a G. hirsutum AtDt (in which ‘t’ indicates tetraploid) cultivar reveals many non-reciprocal DNA exchanges between subgenomes that may have contributed to phenotypic innovation and/or other emergent properties such as ecological adaptation by polyploids. Most DNA-level novelty in G. hirsutum recombines alleles from the D-genome progenitor native to its New World habitat and the Old World A-genome progenitor in which spinnable fibre evolved. Coordinated expression changes in proximal groups of functionally distinct genes, including a nuclear mitochondrial DNA block, may account for clusters of cotton-fibre quantitative trait loci affecting diverse traits. Opportunities abound for dissecting emergent properties of other polyploids, particularly angiosperms, by comparison to diploid progenitors and outgroups.


BMC Genomics | 2006

CMD: a Cotton Microsatellite Database resource for Gossypium genomics

Anna Blenda; Jodi A. Scheffler; Brian E. Scheffler; Michael Palmer; Jean-Marc Lacape; John Z. Yu; Christopher Jesudurai; Sook Jung; Sriram Muthukumar; Preetham Yellambalase; Stephen P. Ficklin; Margaret Staton; Robert Eshelman; Mauricio Ulloa; Sukumar Saha; Benjamin Burr; Shaolin Liu; Tianzhen Zhang; Deqiu Fang; Alan E. Pepper; Siva P. Kumpatla; John Jacobs; Jeffery P. Tomkins; Roy G. Cantrell; Dorrie Main

BackgroundThe Cotton Microsatellite Database (CMD) http://www.cottonssr.org is a curated and integrated web-based relational database providing centralized access to publicly available cotton microsatellites, an invaluable resource for basic and applied research in cotton breeding.DescriptionAt present CMD contains publication, sequence, primer, mapping and homology data for nine major cotton microsatellite projects, collectively representing 5,484 microsatellites. In addition, CMD displays data for three of the microsatellite projects that have been screened against a panel of core germplasm. The standardized panel consists of 12 diverse genotypes including genetic standards, mapping parents, BAC donors, subgenome representatives, unique breeding lines, exotic introgression sources, and contemporary Upland cottons with significant acreage. A suite of online microsatellite data mining tools are accessible at CMD. These include an SSR server which identifies microsatellites, primers, open reading frames, and GC-content of uploaded sequences; BLAST and FASTA servers providing sequence similarity searches against the existing cotton SSR sequences and primers, a CAP3 server to assemble EST sequences into longer transcripts prior to mining for SSRs, and CMap, a viewer for comparing cotton SSR maps.ConclusionThe collection of publicly available cotton SSR markers in a centralized, readily accessible and curated web-enabled database provides a more efficient utilization of microsatellite resources and will help accelerate basic and applied research in molecular breeding and genetic mapping in Gossypium spp.


G3: Genes, Genomes, Genetics | 2015

Development of a 63K SNP Array for Cotton and High-Density Mapping of Intraspecific and Interspecific Populations of Gossypium spp.

Amanda M. Hulse-Kemp; Jana Lemm; Joerg Plieske; Hamid Ashrafi; Ramesh Buyyarapu; David D. Fang; James Frelichowski; Marc Giband; Steve Hague; Lori L. Hinze; Kelli J. Kochan; Penny K. Riggs; Jodi A. Scheffler; Mauricio Ulloa; Shirley S. Wang; Qian-Hao Zhu; Sumit K. Bag; Archana Bhardwaj; John J. Burke; Robert L. Byers; Michel Claverie; Michael A. Gore; David B. Harker; Sariful Islam; Johnie N. Jenkins; Don C. Jones; Jean-Marc Lacape; Danny J. Llewellyn; Richard G. Percy; Alan E. Pepper

High-throughput genotyping arrays provide a standardized resource for plant breeding communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), complex trait dissection, and studying patterns of genomic diversity among cultivars and wild accessions. We have developed the CottonSNP63K, an Illumina Infinium array containing assays for 45,104 putative intraspecific single nucleotide polymorphism (SNP) markers for use within the cultivated cotton species Gossypium hirsutum L. and 17,954 putative interspecific SNP markers for use with crosses of other cotton species with G. hirsutum. The SNPs on the array were developed from 13 different discovery sets that represent a diverse range of G. hirsutum germplasm and five other species: G. barbadense L., G. tomentosum Nuttal × Seemann, G. mustelinum Miers × Watt, G. armourianum Kearny, and G. longicalyx J.B. Hutchinson and Lee. The array was validated with 1,156 samples to generate cluster positions to facilitate automated analysis of 38,822 polymorphic markers. Two high-density genetic maps containing a total of 22,829 SNPs were generated for two F2 mapping populations, one intraspecific and one interspecific, and 3,533 SNP markers were co-occurring in both maps. The produced intraspecific genetic map is the first saturated map that associates into 26 linkage groups corresponding to the number of cotton chromosomes for a cross between two G. hirsutum lines. The linkage maps were shown to have high levels of collinearity to the JGI G. raimondii Ulbrich reference genome sequence. The CottonSNP63K array, cluster file and associated marker sequences constitute a major new resource for the global cotton research community.


PLOS ONE | 2016

Frequent Occurrence of Tomato Leaf Curl New Delhi Virus in Cotton Leaf Curl Disease Affected Cotton in Pakistan.

Syed Zaidi; Muhammad Shafiq; Imran Amin; Brian E. Scheffler; Jodi A. Scheffler; Rob W. Briddon; Shahid Mansoor

Cotton leaf curl disease (CLCuD) is the major biotic constraint to cotton production on the Indian subcontinent, and is caused by monopartite begomoviruses accompanied by a specific DNA satellite, Cotton leaf curl Multan betasatellite (CLCuMB). Since the breakdown of resistance against CLCuD in 2001/2002, only one virus, the “Burewala” strain of Cotton leaf curl Kokhran virus (CLCuKoV-Bur), and a recombinant form of CLCuMB have consistently been identified in cotton across the major cotton growing areas of Pakistan. Unusually a bipartite isolate of the begomovirus Tomato leaf curl virus was identified in CLCuD-affected cotton recently. In the study described here we isolated the bipartite begomovirus Tomato leaf curl New Delhi virus (ToLCNDV) from CLCuD-affected cotton. To assess the frequency and geographic occurrence of ToLCNDV in cotton, CLCuD-symptomatic cotton plants were collected from across the Punjab and Sindh provinces between 2013 and 2015. Analysis of the plants by diagnostic PCR showed the presence of CLCuKoV-Bur in all 31 plants examined and ToLCNDV in 20 of the samples. Additionally, a quantitative real-time PCR analysis of the levels of the two viruses in co-infected plants suggests that coinfection of ToLCNDV with the CLCuKoV-Bur/CLCuMB complex leads to an increase in the levels of CLCuMB, which encodes the major pathogenicity (symptom) determinant of the complex. The significance of these results are discussed.


BMC Plant Biology | 2009

Expression of genes associated with carbohydrate metabolism in cotton stems and roots

Earl Taliercio; Gabriela B. Romano; Jodi A. Scheffler; Brian G. Ayre

BackgroundCotton (Gossypium hirsutum L) is an important crop worldwide that provides fiber for the textile industry. Cotton is a perennial plant that stores starch in stems and roots to provide carbohydrates for growth in subsequent seasons. Domesticated cotton makes these reserves available to developing seeds which impacts seed yield. The goals of these analyses were to identify genes and physiological pathways that establish cotton stems and roots as physiological sinks and investigate the role these pathways play in cotton development during seed set.ResultsAnalysis of field-grown cotton plants indicated that starch levels peaked about the time of first anthesis and then declined similar to reports in greenhouse-grown cotton plants. Starch accumulated along the length of the stem and the shape and size of the starch grains from stems were easily distinguished from transient starch. Microarray analyses compared gene expression in tissues containing low levels of starch with tissues rapidly accumulating starch. Statistical analysis of differentially expressed genes indicated increased expression among genes associated with starch synthesis, starch degradation, hexose metabolism, raffinose synthesis and trehalose synthesis. The anticipated changes in these sugars were largely confirmed by measuring soluble sugars in selected tissues.ConclusionIn domesticated cotton starch stored prior to flowering was available to support seed production. Starch accumulation observed in young field-grown plants was not observed in greenhouse grown plants. A suite of genes associated with starch biosynthesis was identified. The pathway for starch utilization after flowering was associated with an increase in expression of a glucan water dikinase gene as has been implicated in utilization of transient starch. Changes in raffinose levels and levels of expression of genes controlling trehalose and raffinose biosynthesis were also observed in vegetative cotton tissues as plants age.


PLOS ONE | 2016

RNA Interference based Approach to Down Regulate Osmoregulators of Whitefly (Bemisia tabaci): Potential Technology for the Control of Whitefly

Amir Raza; Hassan Jamil Malik; Muhammad Shafiq; Imran Amin; Jodi A. Scheffler; Brian E. Scheffler; Shahid Mansoor

Over the past decade RNA interference (RNAi) technology has emerged as a successful tool not only for functional genomics, but in planta expression of short interfering RNAs (siRNAs) that could offer great potential for insect pest management. The diet of insects feeding exclusively on phloem sieves contains water and sugars as main components, and the uptake of the liquid food greatly depends on the osmotic pressure within the insect body. Based on this physiological mechanism, transgenic plants of Nicotiana tabacum were generated expressing double stranded RNA (dsRNA) against both aquaporin (AQP) and a sucrase gene, alpha glucosidase (AGLU). These two genes are involved in osmotic pressure maintenance particularly in sap sucking insects, and the aim was to disrupt osmoregulation within the insect ultimately leading to mortality. Real time quantitative PCR (RT-qPCR) was performed to assess the suppression of gene expression in Bemisia tabaci (B. tabaci) and mortality was recorded during transgenic tobacco feeding bioassays. Feeding of insects on plants expressing dsRNA significantly reduced the transcript level of the target genes in B. tabaci after six days of feeding and more than 70% mortality was observed in B. tabaci fed on transgenic plants compared to the control plants. Our data shows that down-regulation of genes related to osmoregulation may find practical applications for the control of this important pest in cotton and other crops.


Scientific Reports | 2016

RNAi-mediated mortality of the whitefly through transgenic expression of double-stranded RNA homologous to acetylcholinesterase and ecdysone receptor in tobacco plants

Hassan Jamil Malik; Amir Raza; Imran Amin; Jodi A. Scheffler; Brian E. Scheffler; Judith K. Brown; Shahid Mansoor

The whitefly Bemisia tabaci (Genn.) is a pest and vector of plant viruses to crop and ornamental plants worldwide. Using RNA interference (RNAi) to down regulate whitefly genes by expressing their homologous double stranded RNAs in plants has great potential for management of whiteflies to reduce plant virus disease spread. Using a Tobacco rattle virus-derived plasmid for in planta transient expression of double stranded RNA (dsRNA) homologous to the acetylcholinesterase (AChE) and ecdysone receptor (EcR) genes of B. tabaci, resulted in significant adult whitefly mortality. Nicotiana tabacum L. plants expressing dsRNA homologous to B. tabaci AChE and EcR were constructed by fusing sequences derived from both genes. Mortality of adult whiteflies exposed to dsRNA by feeding on N. tabacum plants, compared to non-dsRNA expressing plants, recorded at 24-hr intervals post-ingestion for three days, was >90% and 10%, respectively. Analysis of gene expression by real time quantitative PCR indicated that whitefly mortality was attributable to the down-regulation of both target genes by RNAi. Results indicated that knock down of whitefly genes involved in neuronal transmission and transcriptional activation of developmental genes, has potential as a bio-pesticide to reduce whitefly population size and thereby decrease virus spread.


BMC Plant Biology | 2017

Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using the CottonSNP63K Array

Lori L. Hinze; Amanda M. Hulse-Kemp; Iain W. Wilson; Qian-Hao Zhu; Danny J. Llewellyn; Jen Taylor; Andrew Spriggs; David D. Fang; Mauricio Ulloa; John J. Burke; Marc Giband; Jean-Marc Lacape; Allen Van Deynze; Jodi A. Scheffler; Steve Hague; Jonathan F. Wendel; Alan E. Pepper; James Frelichowski; Cindy Lawley; Don C. Jones; Richard G. Percy; David M. Stelly

BackgroundCotton germplasm resources contain beneficial alleles that can be exploited to develop germplasm adapted to emerging environmental and climate conditions. Accessions and lines have traditionally been characterized based on phenotypes, but phenotypic profiles are limited by the cost, time, and space required to make visual observations and measurements. With advances in molecular genetic methods, genotypic profiles are increasingly able to identify differences among accessions due to the larger number of genetic markers that can be measured. A combination of both methods would greatly enhance our ability to characterize germplasm resources. Recent efforts have culminated in the identification of sufficient SNP markers to establish high-throughput genotyping systems, such as the CottonSNP63K array, which enables a researcher to efficiently analyze large numbers of SNP markers and obtain highly repeatable results. In the current investigation, we have utilized the SNP array for analyzing genetic diversity primarily among cotton cultivars, making comparisons to SSR-based phylogenetic analyses, and identifying loci associated with seed nutritional traits.ResultsThe SNP markers distinctly separated G. hirsutum from other Gossypium species and distinguished the wild from cultivated types of G. hirsutum. The markers also efficiently discerned differences among cultivars, which was the primary goal when designing the CottonSNP63K array. Population structure within the genus compared favorably with previous results obtained using SSR markers, and an association study identified loci linked to factors that affect cottonseed protein content.ConclusionsOur results provide a large genome-wide variation data set for primarily cultivated cotton. Thousands of SNPs in representative cotton genotypes provide an opportunity to finely discriminate among cultivated cotton from around the world. The SNPs will be relevant as dense markers of genome variation for association mapping approaches aimed at correlating molecular polymorphisms with variation in phenotypic traits, as well as for molecular breeding approaches in cotton.


Scientific Reports | 2017

Multiple begomoviruses found associated with cotton leaf curl disease in Pakistan in early 1990 are back in cultivated cotton

Muhammad Zubair; Syed Shan-e-Ali Zaidi; Sara Shakir; Muhammad Farooq; Imran Amin; Jodi A. Scheffler; Brian E. Scheffler; Shahid Mansoor

The first epidemic of cotton leaf curl disease (CLCuD) in early 1990’s in the Indian subcontinent was associated with several distinct begomoviruses along with a disease-specific betasatellite. Resistant cotton varieties were introduced in late 1990’s but soon resistance was broken and was associated with a single recombinant begomovirus named Burewala strain of Cotton leaf curl Kokhran virus that lacks a full complement of a gene encoding a transcription activator protein (TrAP). In order to understand the ongoing changes in CLCuD complex in Pakistan, CLCuD affected plants from cotton fields at Vehari were collected. Illumina sequencing was used to assess the diversity of CLCuD complex. At least three distinct begomoviruses characterized from the first epidemic; Cotton leaf curl Multan virus, Cotton leaf curl Kokhran virus and Cotton leaf curl Alabad virus, several distinct species of alphasatellites and cotton leaf curl Multan betasatellite were found associated with CLCuD. These viruses were also cloned and sequenced through Sanger sequencing to confirm the identity of the begomoviruses and that all clones possessed a full complement of the TrAP gene. A new strain of betasatellite was identified here and named CLCuMuBVeh. The implications of these findings in efforts to control CLCuD are discussed.


Scientific Reports | 2017

Transcriptomics reveals multiple resistance mechanisms against cotton leaf curl disease in a naturally immune cotton species, Gossypium arboreum

Rubab Zahra Naqvi; Syed Shan-e-Ali Zaidi; Khalid Pervaiz Akhtar; Susan R. Strickler; Melkamu G. Woldemariam; Bharat Mishra; M. Shahid Mukhtar; Brian E. Scheffler; Jodi A. Scheffler; Georg Jander; Lukas A. Mueller; Muhammad Asif; Shahid Mansoor

Cotton leaf curl disease (CLCuD), caused by cotton leaf curl viruses (CLCuVs), is among the most devastating diseases in cotton. While the widely cultivated cotton species Gossypium hirsutum is generally susceptible, the diploid species G. arboreum is a natural source for resistance against CLCuD. However, the influence of CLCuD on the G. arboreum transcriptome and the interaction of CLCuD with G. arboreum remains to be elucidated. Here we have used an RNA-Seq based study to analyze differential gene expression in G. arboreum under CLCuD infestation. G. arboreum plants were infested by graft inoculation using a CLCuD infected scion of G. hirsutum. CLCuD infested asymptomatic and symptomatic plants were analyzed with RNA-seq using an Illumina HiSeq. 2500. Data analysis revealed 1062 differentially expressed genes (DEGs) in G. arboreum. We selected 17 genes for qPCR to validate RNA-Seq data. We identified several genes involved in disease resistance and pathogen defense. Furthermore, a weighted gene co-expression network was constructed from the RNA-Seq dataset that indicated 50 hub genes, most of which are involved in transport processes and might have a role in the defense response of G. arboreum against CLCuD. This fundamental study will improve the understanding of virus-host interaction and identification of important genes involved in G. arboreum tolerance against CLCuD.

Collaboration


Dive into the Jodi A. Scheffler's collaboration.

Top Co-Authors

Avatar

Brian E. Scheffler

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Shahid Mansoor

National Institute for Biotechnology and Genetic Engineering

View shared research outputs
Top Co-Authors

Avatar

Gabriela B. Romano

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Imran Amin

National Institute for Biotechnology and Genetic Engineering

View shared research outputs
Top Co-Authors

Avatar

Earl W. Taliercio

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

David D. Fang

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Danny J. Llewellyn

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge