Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian F. Walters is active.

Publication


Featured researches published by Brian F. Walters.


PLOS ONE | 2013

From Models to Measurements: Comparing Downed Dead Wood Carbon Stock Estimates in the U.S. Forest Inventory

Grant M. Domke; Christopher W. Woodall; Brian F. Walters; James E. Smith

The inventory and monitoring of coarse woody debris (CWD) carbon (C) stocks is an essential component of any comprehensive National Greenhouse Gas Inventory (NGHGI). Due to the expense and difficulty associated with conducting field inventories of CWD pools, CWD C stocks are often modeled as a function of more commonly measured stand attributes such as live tree C density. In order to assess potential benefits of adopting a field-based inventory of CWD C stocks in lieu of the current model-based approach, a national inventory of downed dead wood C across the U.S. was compared to estimates calculated from models associated with the U.S.’s NGHGI and used in the USDA Forest Service, Forest Inventory and Analysis program. The model-based population estimate of C stocks for CWD (i.e., pieces and slash piles) in the conterminous U.S. was 9 percent (145.1 Tg) greater than the field-based estimate. The relatively small absolute difference was driven by contrasting results for each CWD component. The model-based population estimate of C stocks from CWD pieces was 17 percent (230.3 Tg) greater than the field-based estimate, while the model-based estimate of C stocks from CWD slash piles was 27 percent (85.2 Tg) smaller than the field-based estimate. In general, models overestimated the C density per-unit-area from slash piles early in stand development and underestimated the C density from CWD pieces in young stands. This resulted in significant differences in CWD C stocks by region and ownership. The disparity in estimates across spatial scales illustrates the complexity in estimating CWD C in a NGHGI. Based on the results of this study, it is suggested that the U.S. adopt field-based estimates of CWD C stocks as a component of its NGHGI to both reduce the uncertainty within the inventory and improve the sensitivity to potential management and climate change events.


Scientific Reports | 2015

Monitoring Network Confirms Land Use Change is a Substantial Component of the Forest Carbon Sink in the eastern United States

Christopher W. Woodall; Brian F. Walters; John W. Coulston; Anthony W. D’Amato; Grant M. Domke; Matthew B. Russell; Paul A. Sowers

Quantifying forest carbon (C) stocks and stock change within a matrix of land use (LU) and LU change is a central component of large-scale forest C monitoring and reporting practices prescribed by the Intergovernmental Panel on Climate Change (IPCC). Using a region–wide, repeated forest inventory, forest C stocks and stock change by pool were examined by LU categories. In eastern US forests, LU change is a substantial component of C sink strength (~37% of forest sink strength) only secondary to that of C accumulation in forests remaining forest where their comingling with other LUs does not substantially reduce sink strength. The strongest sinks of forest C were study areas not completely dominated by forests, even when there was some loss of forest to agriculture/settlement/other LUs. Long-term LU planning exercises and policy development that seeks to maintain and/or enhance regional C sinks should explicitly recognize the importance of maximizing non-forest to forest LU changes and not overlook management and conservation of forests located in landscapes not currently dominated by forests.


Science of The Total Environment | 2016

Estimating litter carbon stocks on forest land in the United States

Grant M. Domke; Charles H. Perry; Brian F. Walters; Christopher W. Woodall; Matthew B. Russell; James E. Smith

Forest ecosystems are the largest terrestrial carbon sink on earth, with more than half of their net primary production moving to the soil via the decomposition of litter biomass. Therefore, changes in the litter carbon (C) pool have important implications for global carbon budgets and carbon emissions reduction targets and negotiations. Litter accounts for an estimated 5% of all forest ecosystem carbon stocks worldwide. Given the cost and time required to measure litter attributes, many of the signatory nations to the United Nations Framework Convention on Climate Change report estimates of litter carbon stocks and stock changes using default values from the Intergovernmental Panel on Climate Change or country-specific models. In the United States, the country-specific model used to predict litter C stocks is sensitive to attributes on each plot in the national forest inventory, but these predictions are not associated with the litter samples collected over the last decade in the national forest inventory. Here we present, for the first time, estimates of litter carbon obtained using more than 5000 field measurements from the national forest inventory of the United States. The field-based estimates mark a 44% reduction (2081±77Tg) in litter carbon stocks nationally when compared to country-specific model predictions reported in previous United Framework Convention on Climate Change submissions. Our work suggests that Intergovernmental Panel on Climate Change defaults and country-specific models used to estimate litter carbon in temperate forest ecosystems may grossly overestimate the contribution of this pool in national carbon budgets.


Ecosystems | 2016

A Tale of Two Forest Carbon Assessments in the Eastern United States: Forest Use Versus Cover as a Metric of Change

Christopher W. Woodall; Brian F. Walters; Matthew B. Russell; John W. Coulston; Grant M. Domke; Anthony W. D’Amato; P. A. Sowers

The dynamics of land-use practices (for example, forest versus settlements) is often a major driver of changes in terrestrial carbon (C). As the management and conservation of forest land uses are considered a means of reducing future atmospheric CO2 concentrations, the monitoring of forest C stocks and stock change by categories of land-use change (for example, croplands converted to forest) is often a requirement of C monitoring protocols such as those espoused by the Intergovernmental Panel on Climate Change (that is, Good Practice Guidance and Guidelines). The identification of land use is often along a spectrum ranging from direct observation (for example, interpretation of owner intent via field visits) to interpretation of remotely sensed imagery (for example, land cover mapping) or some combination thereof. Given the potential for substantial differences across this spectrum of monitoring techniques, a region-wide, repeated forest inventory across the eastern U.S. was used to evaluate relationships between forest land-use change (derived from a forest inventory) and forest cover change (derived from Landsat modeling) in the context of forest C monitoring strategies. It was found that the correlation between forest land-use change and cover change was minimal (<0.08), with an increase in forest land use but a net decrease in forest cover being the most frequent observation. Cover assessments may be more sensitive to active forest management and/or conversion activities that can lead to confounded conclusions regarding the forest C sink (for example, decreasing forest cover but increasing C stocks in industrial timberlands). In contrast, the categorical nature of direct land-use field observations reduces their sensitivity to forest management activities (for example, clearcutting versus thinning) and recent disturbance events (for example, floods or wildfire) that may obscure interpretation of C dynamics over short time steps. While using direct land-use observations or cover mapping in forest C assessments, they should not be considered interchangeable as both approaches possess idiosyncratic qualities that should be considered when developing conclusions regarding forest C attributes and dynamics across large scales.


Trees-structure and Function | 2015

Forest production dynamics along a wood density spectrum in eastern US forests

Christopher W. Woodall; Matthew B. Russell; Brian F. Walters; Anthony W. D’Amato; K. Zhu; S. S. Saatchi

Key messageEmerging plant economics spectrum theories were confirmed across temperate forest systems of the eastern US where the use of a forest stand’s mean wood density elucidated forest volume and biomass production dynamics integrating aspects of climate, tree mortality/growth, and rates of site occupancy.AbstractAs a tree’s functional trait of wood density has been used to refine models of tree competition, it may also aid in evaluating hypotheses of forest production such as declining growth and mortality across a spectrum of increasing wood density. The goal of this study was to examine trends in aboveground live tree production as related to mean wood density using a region-wide repeated forest inventory across eastern US forests. Using quantile regression, the 90th percentile of volume and biomass accretion was negatively related to the mean wood density of a stand’s constituent tree species. This relationship was strongest on forest sites with the highest number of growing season degree days, as growing season length influences the rates of stand development. For these sites, variations in volume and biomass accretion were most pronounced in stands with low mean tree wood density, which also demonstrated the highest rates of site occupancy and mortality. This study confirmed aspects of the emerging theory of “fast–slow” plant economics spectrums across temperate forest ecosystems. Stands with relatively low wood density appear to occupy sites more rapidly leading to a concomitantly higher rate of tree mortality, but with less biomass accretion relative to volume due to allocating biomass or carbon to a greater tree volume. In contrast, stands with higher wood density exhibited slower site occupancy due to high wood density construction costs, but with increased biomass relative to volume accretion. These findings highlight the potential application of the plant economics spectrum theory in refining our understanding of general patterns of forest stand production, the role of plant traits in forest management, and knowledge gaps such a shifts in tree allometry during stand development.


Gen. Tech. Rep. NRS-154. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 49 p. | 2015

The U.S. forest carbon accounting framework: stocks and stock change, 1990-2016

Christopher W. Woodall; John W. Coulston; Grant M. Domke; Brian F. Walters; David N. Wear; James E. Smith; Hans-Erik Andersen; Brian J. Clough; Warren B. Cohen; Douglas M. Griffith; Stephen C. Hagen; Ian S. Hanou; Michael C. Nichols; Charles H. Perry; Matthew B. Russell; James A. Westfall; Barry T. Wilson

As a signatory to the United Nations Framework Convention on Climate Change, the United States annually prepares an inventory of carbon that has been emitted and sequestered among sectors (e.g., energy, agriculture, and forests). For many years, the United States developed an inventory of forest carbon by comparing contemporary forest inventories to inventories that were collected using different techniques and definitions from more than 20 years ago. Recognizing the need to improve the U.S. forest carbon inventory budget, the United States is adopting the Forest Carbon Accounting Framework, a new approach that removes this older inventory information from the accounting procedures and enables the delineation of forest carbon accumulation by forest growth, land use change, and natural disturbances such as fire. By using the new accounting approach with consistent inventory information, it was found that net land use change is a substantial contributor to the United States forest carbon sink, with the entire forest sink offsetting approximately 15 percent of annual U.S. carbon dioxide emissions from the burning of fossil fuels. The new framework adheres to accounting guidelines set forth by the Intergovernmental Panel on Climate Change while charting a path forward for the incorporation of emerging research, data, and the needs of stakeholders (e.g., reporting at small scales and boreal forest carbon).


Resour. Bull. NRS-89. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 74 p. | 2011

National pulpwood production, 2008

Tony Johnson; Ronald J. Piva; Brian F. Walters

U.S. pulpwood production amounted to 86.5 million cords in 2010, a decrease of 4 percent from 2008. Roundwood production totaled 65.7 million cords and accounted for 76 percent of the Nations total pulpwood production. The Southern Region led the Nation in total production with 65.5 million cords, followed by the Northern Region with 12.8 million cords, and the Western States with 8.2 million cords. In 2010, 136 pulp mills were in operation drawing wood from 36 of the lower 48 states. Pulping capacity for the Nation totaled 166,096 tons per day, with southern mills accounting for 74 percent of the total capacity.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Reforestation can sequester two petagrams of carbon in US topsoils in a century

Lucas E. Nave; Grant M. Domke; Kathryn L. Hofmeister; Umakant Mishra; Charles H. Perry; Brian F. Walters; Christopher W. Swanston

Significance Forestland in the United States is a carbon (C) sink, offsetting ∼10% of annual greenhouse gas emissions and mitigating climate change. Most of the C in forests is held in soils, and the capacity of forest soils to sequester C makes them a major component of the US forest C sink. Where reforestation is presently occurring, either through deliberate replanting after forestland is disturbed (e.g., burned), or where previously nonforested lands (e.g., cultivated) are converting to forestland, topsoils are accumulating C. However, these C accumulation rates are poorly constrained; quantifying them with empirical data are critical to accurately represent the role of reforestation in the US C budget and forecast the longevity of the US forest C sink. Soils are Earth’s largest terrestrial carbon (C) pool, and their responsiveness to land use and management make them appealing targets for strategies to enhance C sequestration. Numerous studies have identified practices that increase soil C, but their inferences are often based on limited data extrapolated over large areas. Here, we combine 15,000 observations from two national-level databases with remote sensing information to address the impacts of reforestation on the sequestration of C in topsoils (uppermost mineral soil horizons). We quantify C stocks in cultivated, reforesting, and natural forest topsoils; rates of C accumulation in reforesting topsoils; and their contribution to the US forest C sink. Our results indicate that reforestation increases topsoil C storage, and that reforesting lands, currently occupying >500,000 km2 in the United States, will sequester a cumulative 1.3–2.1 Pg C within a century (13–21 Tg C·y−1). Annually, these C gains constitute 10% of the US forest sector C sink and offset 1% of all US greenhouse gas emissions.


Archive | 2016

White-tailed deer density estimates across the eastern United States, 2008

Brian F. Walters; Christopher W. Woodall; Matthew B. Russell

The QDMA spatial map depicting deer density (deer per square mile) was digitized across the eastern United States. Estimates of deer density were: White = rare, absent, or urban area with unknown population, Green = less than 15 deer per square mile, Yellow = 15 to 30 deer per square mile, Orange = 30 to 40 deer per square mile, or Red = greater than 45 deer per square mile. These categories represent coarse deer density levels as identified in the QDMA report in 2009 and should not be used to represent current or future deer densities across the study region.


New Forests | 2018

The role of reforestation in carbon sequestration

Lucas E. Nave; Brian F. Walters; Kathryn L. Hofmeister; Charles H. Perry; Umakant Mishra; Grant M. Domke; Christopher W. Swanston

In the United States (U.S.), the maintenance of forest cover is a legal mandate for federally managed forest lands. More broadly, reforestation following harvesting, recent or historic disturbances can enhance numerous carbon (C)-based ecosystem services and functions. These include production of woody biomass for forest products, and mitigation of atmospheric CO2 pollution and climate change by sequestering C into ecosystem pools where it can be stored for long timescales. Nonetheless, a range of assessments and analyses indicate that reforestation in the U.S. lags behind its potential, with the continuation of ecosystem services and functions at risk if reforestation is not increased. In this context, there is need for multiple independent analyses that quantify the role of reforestation in C sequestration, from ecosystems up to regional and national levels. Here, we describe the methods and report the findings of a large-scale data synthesis aimed at four objectives: (1) estimate C storage in major ecosystem pools in forest and other land cover types; (2) quantify sources of variation in ecosystem C pools; (3) compare the impacts of reforestation and afforestation on C pools; (4) assess whether these results hold or diverge across ecoregions. The results of our synthesis support four overarching inferences regarding reforestation and other land use impacts on C sequestration. First, in the bigger picture, soils are the dominant C pool in all ecosystems and land cover types in the U.S., and soil C pool sizes vary less by land cover than by other factors, such as spatial variation or soil wetness. Second, where historically cultivated lands are being reforested, topsoils are sequestering significant amounts of C, with the majority of reforested lands yet to reach their capacity relative to the potential indicated by natural forest soils. Third, the establishment of woody vegetation delivers immediate to multi-decadal C sequestration benefits in aboveground woody biomass and coarse woody debris pools, with two- to three-fold C sequestration benefits in biomass during the first several decades following planting. Fourth, opportunities to enhance C sequestration through reforestation vary among the ecoregions, according to current levels of planting, typical forest growth rates, and past land uses (especially cultivation). Altogether, our results suggest that an immediate, but phased and spatially targeted approach to reforestation can enhance C sequestration in forest biomass and soils in the U.S. for decades to centuries to come.

Collaboration


Dive into the Brian F. Walters's collaboration.

Top Co-Authors

Avatar

Grant M. Domke

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald J. Piva

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles H. Perry

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

James E. Smith

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Mark D. Nelson

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Ronald E. McRoberts

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Susan J. Crocker

United States Forest Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge