Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grant M. Domke is active.

Publication


Featured researches published by Grant M. Domke.


Ecosystems | 2014

Residence times and decay rates of downed woody debris biomass/carbon in eastern US forests

Matthew B. Russell; Christopher W. Woodall; Shawn Fraver; Anthony W. D’Amato; Grant M. Domke; Kenneth E. Skog

A key component in describing forest carbon (C) dynamics is the change in downed dead wood biomass through time. Specifically, there is a dearth of information regarding the residence time of downed woody debris (DWD), which may be reflected in the diversity of wood (for example, species, size, and stage of decay) and site attributes (for example, climate) across the study region of eastern US forests. The empirical assessment of DWD rate of decay and residence time is complicated by the decay process itself, as decomposing logs undergo not only a reduction in wood density over time but also reductions in biomass, shape, and size. Using DWD repeated measurements coupled with models to estimate durations in various stages of decay, estimates of DWD half-life (THALF), residence time (TRES), and decay rate (k constants) were developed for 36 tree species common to eastern US forests. Results indicate that estimates for THALF averaged 18 and 10 years for conifers and hardwoods, respectively. Species that exhibited shorter THALF tended to display a shorter TRES and larger k constants. Averages of TRES ranged from 57 to 124 years for conifers and from 46 to 71 years for hardwoods, depending on the species and methodology for estimating DWD decomposition considered. Decay rate constants (k) increased with increasing temperature of climate zones and ranged from 0.024 to 0.040 for conifers and from 0.043 to 0.064 for hardwoods. These estimates could be incorporated into dynamic global vegetation models to elucidate the role of DWD in forest C dynamics.


Carbon Balance and Management | 2011

Accounting for density reduction and structural loss in standing dead trees: Implications for forest biomass and carbon stock estimates in the United States

Grant M. Domke; Christopher W. Woodall; James E. Smith

BackgroundStanding dead trees are one component of forest ecosystem dead wood carbon (C) pools, whose national stock is estimated by the U.S. as required by the United Nations Framework Convention on Climate Change. Historically, standing dead tree C has been estimated as a function of live tree growing stock volume in the U.S.s National Greenhouse Gas Inventory. Initiated in 1998, the USDA Forest Services Forest Inventory and Analysis program (responsible for compiling the Nations forest C estimates) began consistent nationwide sampling of standing dead trees, which may now supplant previous purely model-based approaches to standing dead biomass and C stock estimation. A substantial hurdle to estimating standing dead tree biomass and C attributes is that traditional estimation procedures are based on merchantability paradigms that may not reflect density reductions or structural loss due to decomposition common in standing dead trees. The goal of this study was to incorporate standing dead tree adjustments into the current estimation procedures and assess how biomass and C stocks change at multiple spatial scales.ResultsAccounting for decay and structural loss in standing dead trees significantly decreased tree- and plot-level C stock estimates (and subsequent C stocks) by decay class and tree component. At a regional scale, incorporating adjustment factors decreased standing dead quaking aspen biomass estimates by almost 50 percent in the Lake States and Douglas-fir estimates by more than 36 percent in the Pacific Northwest.ConclusionsSubstantial overestimates of standing dead tree biomass and C stocks occur when one does not account for density reductions or structural loss. Forest inventory estimation procedures that are descended from merchantability standards may need to be revised toward a more holistic approach to determining standing dead tree biomass and C attributes (i.e., attributes of tree biomass outside of sawlog portions). Incorporating density reductions and structural loss adjustments reduces uncertainty associated with standing dead tree biomass and C while improving consistency with field methods and documentation.


PLOS ONE | 2013

From Models to Measurements: Comparing Downed Dead Wood Carbon Stock Estimates in the U.S. Forest Inventory

Grant M. Domke; Christopher W. Woodall; Brian F. Walters; James E. Smith

The inventory and monitoring of coarse woody debris (CWD) carbon (C) stocks is an essential component of any comprehensive National Greenhouse Gas Inventory (NGHGI). Due to the expense and difficulty associated with conducting field inventories of CWD pools, CWD C stocks are often modeled as a function of more commonly measured stand attributes such as live tree C density. In order to assess potential benefits of adopting a field-based inventory of CWD C stocks in lieu of the current model-based approach, a national inventory of downed dead wood C across the U.S. was compared to estimates calculated from models associated with the U.S.’s NGHGI and used in the USDA Forest Service, Forest Inventory and Analysis program. The model-based population estimate of C stocks for CWD (i.e., pieces and slash piles) in the conterminous U.S. was 9 percent (145.1 Tg) greater than the field-based estimate. The relatively small absolute difference was driven by contrasting results for each CWD component. The model-based population estimate of C stocks from CWD pieces was 17 percent (230.3 Tg) greater than the field-based estimate, while the model-based estimate of C stocks from CWD slash piles was 27 percent (85.2 Tg) smaller than the field-based estimate. In general, models overestimated the C density per-unit-area from slash piles early in stand development and underestimated the C density from CWD pieces in young stands. This resulted in significant differences in CWD C stocks by region and ownership. The disparity in estimates across spatial scales illustrates the complexity in estimating CWD C in a NGHGI. Based on the results of this study, it is suggested that the U.S. adopt field-based estimates of CWD C stocks as a component of its NGHGI to both reduce the uncertainty within the inventory and improve the sensitivity to potential management and climate change events.


Archive | 2011

Methods and equations for estimating aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010

Christopher W. Woodall; Linda S. Heath; Grant M. Domke; Michael C. Nichols

The U.S. Forest Service, Forest Inventory and Analysis (FIA) program uses numerous models and associated coefficients to estimate aboveground volume, biomass, and carbon for live and standing dead trees for most tree species in forests of the United States. The tree attribute models are coupled with FIAs national inventory of sampled trees to produce estimates of tree growing-stock volume, biomass, and carbon, which are available in the Forest Inventory and Analysis database (FIADB; http://fiatools.fs.fed.us). To address an increasing need for accurate and easy-to-use documentation of relevant tree attribute models, needed individual tree gross volume, sound volume, biomass (including components), and carbon models for species in the United States are compiled and described in this publication with accompanying electronic files on a CD-ROM (13.4 MB Zip) included with the publication. This report describes models currently in use as of 2010. These models are subject to change as the FIADB and associated tree attribute models are improved.


Scientific Reports | 2015

Monitoring Network Confirms Land Use Change is a Substantial Component of the Forest Carbon Sink in the eastern United States

Christopher W. Woodall; Brian F. Walters; John W. Coulston; Anthony W. D’Amato; Grant M. Domke; Matthew B. Russell; Paul A. Sowers

Quantifying forest carbon (C) stocks and stock change within a matrix of land use (LU) and LU change is a central component of large-scale forest C monitoring and reporting practices prescribed by the Intergovernmental Panel on Climate Change (IPCC). Using a region–wide, repeated forest inventory, forest C stocks and stock change by pool were examined by LU categories. In eastern US forests, LU change is a substantial component of C sink strength (~37% of forest sink strength) only secondary to that of C accumulation in forests remaining forest where their comingling with other LUs does not substantially reduce sink strength. The strongest sinks of forest C were study areas not completely dominated by forests, even when there was some loss of forest to agriculture/settlement/other LUs. Long-term LU planning exercises and policy development that seeks to maintain and/or enhance regional C sinks should explicitly recognize the importance of maximizing non-forest to forest LU changes and not overlook management and conservation of forests located in landscapes not currently dominated by forests.


Science of The Total Environment | 2016

Estimating litter carbon stocks on forest land in the United States

Grant M. Domke; Charles H. Perry; Brian F. Walters; Christopher W. Woodall; Matthew B. Russell; James E. Smith

Forest ecosystems are the largest terrestrial carbon sink on earth, with more than half of their net primary production moving to the soil via the decomposition of litter biomass. Therefore, changes in the litter carbon (C) pool have important implications for global carbon budgets and carbon emissions reduction targets and negotiations. Litter accounts for an estimated 5% of all forest ecosystem carbon stocks worldwide. Given the cost and time required to measure litter attributes, many of the signatory nations to the United Nations Framework Convention on Climate Change report estimates of litter carbon stocks and stock changes using default values from the Intergovernmental Panel on Climate Change or country-specific models. In the United States, the country-specific model used to predict litter C stocks is sensitive to attributes on each plot in the national forest inventory, but these predictions are not associated with the litter samples collected over the last decade in the national forest inventory. Here we present, for the first time, estimates of litter carbon obtained using more than 5000 field measurements from the national forest inventory of the United States. The field-based estimates mark a 44% reduction (2081±77Tg) in litter carbon stocks nationally when compared to country-specific model predictions reported in previous United Framework Convention on Climate Change submissions. Our work suggests that Intergovernmental Panel on Climate Change defaults and country-specific models used to estimate litter carbon in temperate forest ecosystems may grossly overestimate the contribution of this pool in national carbon budgets.


PLOS ONE | 2013

A Framework for Assessing Global Change Risks to Forest Carbon Stocks in the United States

Christopher W. Woodall; Grant M. Domke; Karin L. Riley; Christopher M. Oswalt; Susan J. Crocker; Gary W. Yohe

Among terrestrial environments, forests are not only the largest long-term sink of atmospheric carbon (C), but are also susceptible to global change themselves, with potential consequences including alterations of C cycles and potential C emission. To inform global change risk assessment of forest C across large spatial/temporal scales, this study constructed and evaluated a basic risk framework which combined the magnitude of C stocks and their associated probability of stock change in the context of global change across the US. For the purposes of this analysis, forest C was divided into five pools, two live (aboveground and belowground biomass) and three dead (dead wood, soil organic matter, and forest floor) with a risk framework parameterized using the USs national greenhouse gas inventory and associated forest inventory data across current and projected future Köppen-Geiger climate zones (A1F1 scenario). Results suggest that an initial forest C risk matrix may be constructed to focus attention on short- and long-term risks to forest C stocks (as opposed to implementation in decision making) using inventory-based estimates of total stocks and associated estimates of variability (i.e., coefficient of variation) among climate zones. The empirical parameterization of such a risk matrix highlighted numerous knowledge gaps: 1) robust measures of the likelihood of forest C stock change under climate change scenarios, 2) projections of forest C stocks given unforeseen socioeconomic conditions (i.e., land-use change), and 3) appropriate social responses to global change events for which there is no contemporary climate/disturbance analog (e.g., severe droughts in the Lake States). Coupling these current technical/social limits of developing a risk matrix to the biological processes of forest ecosystems (i.e., disturbance events and interaction among diverse forest C pools, potential positive feedbacks, and forest resiliency/recovery) suggests an operational forest C risk matrix remains elusive.


Remote Sensing | 2017

Evaluating Site-Specific and Generic Spatial Models of Aboveground Forest Biomass Based on Landsat Time-Series and LiDAR Strip Samples in the Eastern USA

Ram K. Deo; Matthew B. Russell; Grant M. Domke; Hans Erik Andersen; Warren B. Cohen; Christopher W. Woodall

Large-area assessment of aboveground tree biomass (AGB) to inform regional or national forest monitoring programs can be efficiently carried out by combining remotely sensed data and field sample measurements through a generic statistical model, in contrast to site-specific models. We integrated forest inventory plot data with spatial predictors from Landsat time-series imagery and LiDAR strip samples at four sites across the eastern USA—Minnesota (MN), Maine (ME), Pennsylvania-New Jersey (PANJ) and South Carolina (SC)—in statistical modeling frameworks to analyze the performance of generic (all sites combined) versus site-specific models. The major objective was to evaluate the prediction accuracy of generic and site-specific models when applied to particular sites. Pixel-level polynomial model fitting was applied to the time-series of near-anniversary date Landsat variables to obtain projected metrics in the target year 2014 for which LiDAR strip samples were available. Two forms of models based on ordinary least-squares multiple linear regressions (MLR) and the random forest (RF) machine learning approach were developed for each site and for the pooled (i.e., generic) reference data frame. The models were evaluated using national forest inventory (NFI) data for the USA. We observed stronger fit statistics with the MLR than with RF for both the site-specific and the generic models. The proportions of variances explained (adjusted R2) with the site-specific models were 0.86, 0.78, 0.82 and 0.92 for ME, MN, PANJ and SC, respectively while the generic model had adjusted R2 = 0.85. A test of statistical equivalence of observed and predicted AGB for the NFI locations did not reveal equivalence with any of the models, possibly due to the different resolutions of the observed and predicted data. In contrast, predictions by the generic and site-specific models were equivalent. We conclude that a generic model provides accuracies comparable to the site-specific models for large-area AGB assessment across our study sites in the eastern USA.


Ecosystems | 2016

A Tale of Two Forest Carbon Assessments in the Eastern United States: Forest Use Versus Cover as a Metric of Change

Christopher W. Woodall; Brian F. Walters; Matthew B. Russell; John W. Coulston; Grant M. Domke; Anthony W. D’Amato; P. A. Sowers

The dynamics of land-use practices (for example, forest versus settlements) is often a major driver of changes in terrestrial carbon (C). As the management and conservation of forest land uses are considered a means of reducing future atmospheric CO2 concentrations, the monitoring of forest C stocks and stock change by categories of land-use change (for example, croplands converted to forest) is often a requirement of C monitoring protocols such as those espoused by the Intergovernmental Panel on Climate Change (that is, Good Practice Guidance and Guidelines). The identification of land use is often along a spectrum ranging from direct observation (for example, interpretation of owner intent via field visits) to interpretation of remotely sensed imagery (for example, land cover mapping) or some combination thereof. Given the potential for substantial differences across this spectrum of monitoring techniques, a region-wide, repeated forest inventory across the eastern U.S. was used to evaluate relationships between forest land-use change (derived from a forest inventory) and forest cover change (derived from Landsat modeling) in the context of forest C monitoring strategies. It was found that the correlation between forest land-use change and cover change was minimal (<0.08), with an increase in forest land use but a net decrease in forest cover being the most frequent observation. Cover assessments may be more sensitive to active forest management and/or conversion activities that can lead to confounded conclusions regarding the forest C sink (for example, decreasing forest cover but increasing C stocks in industrial timberlands). In contrast, the categorical nature of direct land-use field observations reduces their sensitivity to forest management activities (for example, clearcutting versus thinning) and recent disturbance events (for example, floods or wildfire) that may obscure interpretation of C dynamics over short time steps. While using direct land-use observations or cover mapping in forest C assessments, they should not be considered interchangeable as both approaches possess idiosyncratic qualities that should be considered when developing conclusions regarding forest C attributes and dynamics across large scales.


Resour. Bull. NRS-55. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 48 p. [DVD included]. | 2011

The Forests of Southern New England, 2007: A report on the forest resources of Connecticut, Massachusetts, and Rhode Island

Brett J. Butler; Charles J. Barnett; Susan J. Crocker; Grant M. Domke; Dale D. Gormanson; William N. Hill; Cassandra M. Kurtz; Tonya W. Lister; Christopher Martin; Patrick D. Miles; Randall S. Morin; W. Keith Moser; Mark D. Nelson; Barbara O'Connell; Bruce Payton; Charles H. Perry; Ronald J. Piva; Rachel Riemann; Christopher W. Woodall

This report summarizes the results of the fifth forest inventory of the forests of Southern New England, defined as Connecticut, Massachusetts, and Rhode Island, conducted by the U.S. Forest Service, Forest Inventory and analysis program. Information on forest attributes, ownership, land use change, carbon, timber products, forest health, and statistics and quality assurance of data collection are included. There are 5.1 million acres of forest land across the region; 60 percent of this forest land is in Massachusetts, 33 percent in Connecticut, and 7 percent in Rhode Island. This amount has decreased by 5 percent since the last inventory was completed in 1998. There are 2.6 billion trees on this forest land that have total volume of 12.6 billion cubic feet. Red maple and eastern white pine are the most common species in terms of both numbers of trees and volume. Fifty percent of the forest land is classified as the oak-hickory forest type.

Collaboration


Dive into the Grant M. Domke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian F. Walters

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brett J. Butler

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Charles H. Perry

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Susan J. Crocker

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Cassandra M. Kurtz

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Mark A. Hatfield

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Mark D. Nelson

United States Forest Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge