Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian H. Johnston is active.

Publication


Featured researches published by Brian H. Johnston.


Oligonucleotides | 2008

Stability Study of Unmodified siRNA and Relevance to Clinical Use

Robyn P. Hickerson; Alexander V. Vlassov; Qian Wang; Devin Leake; Heini Ilves; Emilio Gonzalez-Gonzalez; Christopher H. Contag; Brian H. Johnston; Roger L. Kaspar

RNA interference offers enormous potential to develop therapeutic agents for a variety of diseases. To assess the stability of siRNAs under conditions relevant to clinical use with particular emphasis on topical delivery considerations, a study of three different unmodified siRNAs was performed. The results indicate that neither repeated freeze/thaw cycles, extended incubations (over 1 year at 21 degrees C), nor shorter incubations at high temperatures (up to 95 degrees C) have any effect on siRNA integrity as measured by nondenaturing polyacrylamide gel electrophoresis and functional activity assays. Degradation was also not observed following exposure to hair or skin at 37 degrees C. However, incubation in fetal bovine or human sera at 37 degrees C led to degradation and loss of activity. Therefore, siRNA in the bloodstream is likely inactivated, thereby limiting systemic exposure. Interestingly, partial degradation (observed by gel electrophoresis) did not always correlate with loss of activity, suggesting that partially degraded siRNAs retain full functional activity. To demonstrate the functional activity of unmodified siRNA, EGFP-specific inhibitors were injected into footpads and shown to inhibit preexisting EGFP expression in a transgenic reporter mouse model. Taken together, these data indicate that unmodified siRNAs are viable therapeutic candidates.


Journal of Molecular Evolution | 2005

The RNA World on Ice: A New Scenario for the Emergence of RNA Information

Alexander V. Vlassov; Sergei A. Kazakov; Brian H. Johnston; Laura F. Landweber

The RNA world hypothesis refers to a hypothetical era prior to coded peptide synthesis, where RNA was the major structural, genetic, and catalytic agent. Though it is a widely accepted scenario, a number of vexing difficulties remain. In this review we focus on a missing link of the RNA world hypothesis—primitive miniribozymes, in particular ligases, and discuss the role of these molecules in the evolution of RNA size and complexity. We argue that prebiotic conditions associated with freezing, rather than “warm and wet” conditions, could have been of key importance in the early RNA world.


Nucleic Acids Research | 2012

Right- and left-loop short shRNAs have distinct and unusual mechanisms of gene silencing

Anne Dallas; Heini Ilves; Qing Ge; Pavan Kumar; Joshua Shorenstein; Sergei A. Kazakov; Trinna L. Cuellar; Michael T. McManus; Mark A. Behlke; Brian H. Johnston

Small hairpin RNAs (shRNAs) having duplex lengths of 25–29 bp are normally processed by Dicer into short interfering RNAs (siRNAs) before incorporation into the RNA-induced silencing complex (RISC). However, shRNAs of ≤19 bp [short shRNAs (sshRNAs)] are too short for Dicer to excise their loops, raising questions about their mechanism of action. sshRNAs are designated as L-type or R-type according to whether the loop is positioned 3′ or 5′ to the guide sequence, respectively. Using nucleotide modifications that inhibit RNA cleavage, we show that R- but not L-sshRNAs require loop cleavage for optimum activity. Passenger-arm slicing was found to be important for optimal functioning of L-sshRNAs but much less important for R-sshRNAs that have a cleavable loop. R-sshRNAs could be immunoprecipitated by antibodies to Argonaute-1 (Ago1); complexes with Ago1 contained both intact and loop-cleaved sshRNAs. In contrast, L-sshRNAs were immunoprecipitated with either Ago1 or Ago2 and were predominantly sliced in the passenger arm of the hairpin. However, ‘pre-sliced’ L-sshRNAs were inactive. We conclude that active L-sshRNAs depend on slicing of the passenger arm to facilitate opening of the duplex, whereas R-sshRNAs primarily act via loop cleavage to generate a 5′-phosphate at the 5′-end of the guide strand.


Bioconjugate Chemistry | 2013

pH-Triggered Nanoparticle Mediated Delivery of siRNA to Liver Cells in Vitro and in Vivo

Soumia Kolli; Suet-Ping Wong; Richard P. Harbottle; Brian H. Johnston; Maya Thanou; Andrew D. Miller

Recently, we reported for the first time the development of pH-triggered nanoparticles for the functional delivery of small interfering RNA (siRNA) to liver for treatment of hepatitis B virus infections in vivo. Here, we report on systematic formulation and biophysical studies of three different pH-triggered nanoparticle formulations looking for ways to improve on the capabilities of our previous nanoparticle system. We demonstrate how pH-triggered, PEGylated siRNA nanoparticles stable with respect to aggregation in 80% serum can still release siRNA payload at pH 5.5 within 30 min. This capability allows functional delivery to cultured murine hepatocyte cells in vitro, despite a high degree of PEGylation (5 mol %). We also demonstrate that pH-triggered, PEGylated siRNA nanoparticles typically enter cells by clathrin-coated pit endocytosis, but functional delivery requires membrane fusion events (fusogenicity). Biodistribution studies indicate that >70% of our administered nanoparticles are found in liver hepatocytes, post intravenous administration. Pharmacodynamic experiments show siRNA delivery to murine liver effecting maximum knockdown 48 h post administration from a single dose, while control (nontriggered) nanoparticles require 96 h and two doses to demonstrate the same effect. We also describe an anti-hepatitis C virus (HCV) proof-of-concept experiment indicating the possibility of RNAi therapy for HCV infections using pH-triggered, PEGylated siRNA nanoparticles.


Annals of the New York Academy of Sciences | 2006

Inhibition of Hepatitis C IRES-Mediated Gene Expression by Small Hairpin RNAs in Human Hepatocytes and Mice

Heini Ilves; Roger L. Kaspar; Qian Wang; Attila A. Seyhan; Alexander V. Vlassov; Christopher H. Contag; Devin Leake; Brian H. Johnston

Abstract:  The ability of small hairpin RNAs (shRNAs) to inhibit hepatitis C virus internal ribosome entry site (HCV IRES)‐dependent gene expression was investigated in cultured cells and a mouse model. The results indicate that shRNAs, delivered as naked RNA or expressed from vectors, may be effective agents for the control of HCV and related viruses.


Gastroenterology | 2014

Formulated Minimal-Length Synthetic Small Hairpin RNAs Are Potent Inhibitors of Hepatitis C Virus in Mice With Humanized Livers

Han Ma; Anne Dallas; Heini Ilves; Joshua Shorenstein; Ian Maclachlan; Klaus Klumpp; Brian H. Johnston

Short synthetic hairpin RNAs (sshRNAs) (SG220 and SG273) that target the internal ribosome entry site of the hepatitis C virus (HCV) were formulated into lipid nanoparticles and administered intravenously to HCV-infected urokinase plasminogen activator-severe combined immunodeficient mice with livers repopulated with human hepatocytes (humanized livers). Weekly administration of 2.5 mg/kg of each sshRNA for 2 weeks resulted in a maximal mean reduction in viral load of 2.5 log10 from baseline. The viral load remained reduced by more than 90% at 14 days after the last dose was given. The sshRNAs were well tolerated and did not significantly increase liver enzyme levels. These findings indicate the in vivo efficacy of a synthetic RNA inhibitor against the HCV genome in reducing HCV infection.


Journal of Virology | 2014

Inhibition of Hepatitis C Virus in Chimeric Mice by Short Synthetic Hairpin RNAs: Sequence Analysis of Surviving Virus Shows Added Selective Pressure of Combination Therapy

Anne Dallas; Heini Ilves; Han Ma; Daniel J. Chin; Ian Maclachlan; Klaus Klumpp; Brian H. Johnston

ABSTRACT We have recently shown that a cocktail of two short synthetic hairpin RNAs (sshRNAs), targeting the internal ribosome entry site of hepatitis C virus (HCV) formulated with lipid nanoparticles, was able to suppress viral replication in chimeric mice infected with HCV GT1a by up to 2.5 log10 (H. Ma et al., Gastroenterology 146:63–66.e5, http://dx.doi.org/10.1053/j.gastro.2013.09.049) Viral load remained about 1 log10 below pretreatment levels 21 days after the end of dosing. We have now sequenced the HCV viral RNA amplified from serum of treated mice after the 21-day follow-up period. Viral RNA from the HCV sshRNA-treated groups was altered in sequences complementary to the sshRNAs and nowhere else in the 500-nucleotide sequenced region, while the viruses from the control group that received an irrelevant sshRNA had no mutations in that region. The ability of the most commonly selected mutations to confer resistance to the sshRNAs was confirmed in vitro by introducing those mutations into HCV-luciferase reporters. The mutations most frequently selected by sshRNA treatment within the sshRNA target sequence occurred at the most polymorphic residues, as identified from an analysis of available clinical isolates. These results demonstrate a direct antiviral activity with effective HCV suppression, demonstrate the added selective pressure of combination therapy, and confirm an RNA interference (RNAi) mechanism of action. IMPORTANCE This study presents a detailed analysis of the impact of treating a hepatitis C virus (HCV)-infected animal with synthetic hairpin-shaped RNAs that can degrade the viruss RNA genome. These RNAs can reduce the viral load in these animals by over 99% after 1 to 2 injections. The study results confirm that the viral rebound that often occurred a few weeks after treatment is due to emergence of a virus whose genome is mutated in the sequences targeted by the RNAs. The use of two RNA inhibitors, which is more effective than use of either one by itself, requires that any resistant virus have mutations in the targets sites of both agents, a higher hurdle, if the virus is to retain the ability to replicate efficiently. These results demonstrate a direct antiviral activity with effective HCV suppression, demonstrate the added selective pressure of combination therapy, and confirm an RNAi mechanism of action.


Molecular therapy. Nucleic acids | 2013

Minimal-length Synthetic shRNAs Formulated with Lipid Nanoparticles are Potent Inhibitors of Hepatitis C Virus IRES-linked Gene Expression in Mice

Anne Dallas; Heini Ilves; Joshua Shorenstein; Adam Judge; Ryan Spitler; Christopher H. Contag; Suet Ping Wong; Richard P. Harbottle; Ian Maclachlan; Brian H. Johnston

We previously identified short synthetic shRNAs (sshRNAs) that target a conserved hepatitis C virus (HCV) sequence within the internal ribosome entry site (IRES) of HCV and potently inhibit HCV IRES-linked gene expression. To assess in vivo liver delivery and activity, the HCV-directed sshRNA SG220 was formulated into lipid nanoparticles (LNP) and injected i.v. into mice whose livers supported stable HCV IRES-luciferase expression from a liver-specific promoter. After a single injection, RNase protection assays for the sshRNA and 3H labeling of a lipid component of the nanoparticles showed efficient liver uptake of both components and long-lasting survival of a significant fraction of the sshRNA in the liver. In vivo imaging showed a dose-dependent inhibition of luciferase expression (>90% 1 day after injection of 2.5 mg/kg sshRNA) with t1/2 for recovery of about 3 weeks. These results demonstrate the ability of moderate levels of i.v.-injected, LNP-formulated sshRNAs to be taken up by liver hepatocytes at a level sufficient to substantially suppress gene expression. Suppression is rapid and durable, suggesting that sshRNAs may have promise as therapeutic agents for liver indications.


Nucleic Acids Research | 2008

Hairpin ribozyme-antisense RNA constructs can act as molecular lassos

Anne Dallas; Svetlana V. Balatskaya; Tai Chih Kuo; Heini Ilves; Alexander V. Vlassov; Roger L. Kaspar; Kevin O. Kisich; Sergei A. Kazakov; Brian H. Johnston

We have developed a novel class of antisense agents, RNA Lassos, which are capable of binding to and circularizing around complementary target RNAs. The RNA Lasso consists of a fixed sequence derived from the hairpin ribozyme and an antisense segment whose size and sequence can be varied to base pair with accessible sites in the target RNA. The ribozyme catalyzes self-processing of the 5′- and 3′-ends of a transcribed Lasso precursor and ligates the processed ends to produce a circular RNA. The circular and linear forms of the self-processed Lasso coexist in an equilibrium that is dependent on both the Lasso sequence and the solution conditions. Lassos form strong, noncovalent complexes with linear target RNAs and form true topological linkages with circular targets. Lasso complexes with linear RNA targets were detected by denaturing gel electrophoresis and were found to be more stable than ordinary RNA duplexes. We show that expression of a fusion mRNA consisting of a sequence from the murine tumor necrosis factor-α (TNF-α) gene linked to luciferase reporter can be specifically and efficiently blocked by an anti-TNF Lasso. We also show in cell culture experiments that Lassos directed against Fas pre-mRNA were able to induce a change in alternative splicing patterns.


Methods of Molecular Biology | 2013

Design and chemical modification of synthetic short shRNAs as potent RNAi triggers.

Anne Dallas; Brian H. Johnston

Synthetic shRNAs that are too short to be Dicer substrates (short shRNAs or sshRNAs) can be highly potent RNAi effectors when properly designed, with activities similar to or more potent than the more commonly used siRNAs targeting the same sequences. sshRNAs can be designed in two possible orientations: left- or right-hand loop, designated L-sshRNAs and R-sshRNAs, respectively. Because L- and R-sshRNAs are processed by the RNAi machinery in different ways, optimal designs for the two formats diverge in several key aspects. Here, we describe the principles of design and chemical modification of highly effective L- and R-sshRNAs.

Collaboration


Dive into the Brian H. Johnston's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander V. Vlassov

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Devin Leake

Thermo Fisher Scientific

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge