Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heini Ilves is active.

Publication


Featured researches published by Heini Ilves.


Oligonucleotides | 2008

Stability Study of Unmodified siRNA and Relevance to Clinical Use

Robyn P. Hickerson; Alexander V. Vlassov; Qian Wang; Devin Leake; Heini Ilves; Emilio Gonzalez-Gonzalez; Christopher H. Contag; Brian H. Johnston; Roger L. Kaspar

RNA interference offers enormous potential to develop therapeutic agents for a variety of diseases. To assess the stability of siRNAs under conditions relevant to clinical use with particular emphasis on topical delivery considerations, a study of three different unmodified siRNAs was performed. The results indicate that neither repeated freeze/thaw cycles, extended incubations (over 1 year at 21 degrees C), nor shorter incubations at high temperatures (up to 95 degrees C) have any effect on siRNA integrity as measured by nondenaturing polyacrylamide gel electrophoresis and functional activity assays. Degradation was also not observed following exposure to hair or skin at 37 degrees C. However, incubation in fetal bovine or human sera at 37 degrees C led to degradation and loss of activity. Therefore, siRNA in the bloodstream is likely inactivated, thereby limiting systemic exposure. Interestingly, partial degradation (observed by gel electrophoresis) did not always correlate with loss of activity, suggesting that partially degraded siRNAs retain full functional activity. To demonstrate the functional activity of unmodified siRNA, EGFP-specific inhibitors were injected into footpads and shown to inhibit preexisting EGFP expression in a transgenic reporter mouse model. Taken together, these data indicate that unmodified siRNAs are viable therapeutic candidates.


Nucleic Acids Research | 2012

Right- and left-loop short shRNAs have distinct and unusual mechanisms of gene silencing

Anne Dallas; Heini Ilves; Qing Ge; Pavan Kumar; Joshua Shorenstein; Sergei A. Kazakov; Trinna L. Cuellar; Michael T. McManus; Mark A. Behlke; Brian H. Johnston

Small hairpin RNAs (shRNAs) having duplex lengths of 25–29 bp are normally processed by Dicer into short interfering RNAs (siRNAs) before incorporation into the RNA-induced silencing complex (RISC). However, shRNAs of ≤19 bp [short shRNAs (sshRNAs)] are too short for Dicer to excise their loops, raising questions about their mechanism of action. sshRNAs are designated as L-type or R-type according to whether the loop is positioned 3′ or 5′ to the guide sequence, respectively. Using nucleotide modifications that inhibit RNA cleavage, we show that R- but not L-sshRNAs require loop cleavage for optimum activity. Passenger-arm slicing was found to be important for optimal functioning of L-sshRNAs but much less important for R-sshRNAs that have a cleavable loop. R-sshRNAs could be immunoprecipitated by antibodies to Argonaute-1 (Ago1); complexes with Ago1 contained both intact and loop-cleaved sshRNAs. In contrast, L-sshRNAs were immunoprecipitated with either Ago1 or Ago2 and were predominantly sliced in the passenger arm of the hairpin. However, ‘pre-sliced’ L-sshRNAs were inactive. We conclude that active L-sshRNAs depend on slicing of the passenger arm to facilitate opening of the duplex, whereas R-sshRNAs primarily act via loop cleavage to generate a 5′-phosphate at the 5′-end of the guide strand.


Annals of the New York Academy of Sciences | 2006

Inhibition of Hepatitis C IRES-Mediated Gene Expression by Small Hairpin RNAs in Human Hepatocytes and Mice

Heini Ilves; Roger L. Kaspar; Qian Wang; Attila A. Seyhan; Alexander V. Vlassov; Christopher H. Contag; Devin Leake; Brian H. Johnston

Abstract:  The ability of small hairpin RNAs (shRNAs) to inhibit hepatitis C virus internal ribosome entry site (HCV IRES)‐dependent gene expression was investigated in cultured cells and a mouse model. The results indicate that shRNAs, delivered as naked RNA or expressed from vectors, may be effective agents for the control of HCV and related viruses.


Gastroenterology | 2014

Formulated Minimal-Length Synthetic Small Hairpin RNAs Are Potent Inhibitors of Hepatitis C Virus in Mice With Humanized Livers

Han Ma; Anne Dallas; Heini Ilves; Joshua Shorenstein; Ian Maclachlan; Klaus Klumpp; Brian H. Johnston

Short synthetic hairpin RNAs (sshRNAs) (SG220 and SG273) that target the internal ribosome entry site of the hepatitis C virus (HCV) were formulated into lipid nanoparticles and administered intravenously to HCV-infected urokinase plasminogen activator-severe combined immunodeficient mice with livers repopulated with human hepatocytes (humanized livers). Weekly administration of 2.5 mg/kg of each sshRNA for 2 weeks resulted in a maximal mean reduction in viral load of 2.5 log10 from baseline. The viral load remained reduced by more than 90% at 14 days after the last dose was given. The sshRNAs were well tolerated and did not significantly increase liver enzyme levels. These findings indicate the in vivo efficacy of a synthetic RNA inhibitor against the HCV genome in reducing HCV infection.


Journal of Virology | 2014

Inhibition of Hepatitis C Virus in Chimeric Mice by Short Synthetic Hairpin RNAs: Sequence Analysis of Surviving Virus Shows Added Selective Pressure of Combination Therapy

Anne Dallas; Heini Ilves; Han Ma; Daniel J. Chin; Ian Maclachlan; Klaus Klumpp; Brian H. Johnston

ABSTRACT We have recently shown that a cocktail of two short synthetic hairpin RNAs (sshRNAs), targeting the internal ribosome entry site of hepatitis C virus (HCV) formulated with lipid nanoparticles, was able to suppress viral replication in chimeric mice infected with HCV GT1a by up to 2.5 log10 (H. Ma et al., Gastroenterology 146:63–66.e5, http://dx.doi.org/10.1053/j.gastro.2013.09.049) Viral load remained about 1 log10 below pretreatment levels 21 days after the end of dosing. We have now sequenced the HCV viral RNA amplified from serum of treated mice after the 21-day follow-up period. Viral RNA from the HCV sshRNA-treated groups was altered in sequences complementary to the sshRNAs and nowhere else in the 500-nucleotide sequenced region, while the viruses from the control group that received an irrelevant sshRNA had no mutations in that region. The ability of the most commonly selected mutations to confer resistance to the sshRNAs was confirmed in vitro by introducing those mutations into HCV-luciferase reporters. The mutations most frequently selected by sshRNA treatment within the sshRNA target sequence occurred at the most polymorphic residues, as identified from an analysis of available clinical isolates. These results demonstrate a direct antiviral activity with effective HCV suppression, demonstrate the added selective pressure of combination therapy, and confirm an RNA interference (RNAi) mechanism of action. IMPORTANCE This study presents a detailed analysis of the impact of treating a hepatitis C virus (HCV)-infected animal with synthetic hairpin-shaped RNAs that can degrade the viruss RNA genome. These RNAs can reduce the viral load in these animals by over 99% after 1 to 2 injections. The study results confirm that the viral rebound that often occurred a few weeks after treatment is due to emergence of a virus whose genome is mutated in the sequences targeted by the RNAs. The use of two RNA inhibitors, which is more effective than use of either one by itself, requires that any resistant virus have mutations in the targets sites of both agents, a higher hurdle, if the virus is to retain the ability to replicate efficiently. These results demonstrate a direct antiviral activity with effective HCV suppression, demonstrate the added selective pressure of combination therapy, and confirm an RNAi mechanism of action.


Molecular therapy. Nucleic acids | 2013

Minimal-length Synthetic shRNAs Formulated with Lipid Nanoparticles are Potent Inhibitors of Hepatitis C Virus IRES-linked Gene Expression in Mice

Anne Dallas; Heini Ilves; Joshua Shorenstein; Adam Judge; Ryan Spitler; Christopher H. Contag; Suet Ping Wong; Richard P. Harbottle; Ian Maclachlan; Brian H. Johnston

We previously identified short synthetic shRNAs (sshRNAs) that target a conserved hepatitis C virus (HCV) sequence within the internal ribosome entry site (IRES) of HCV and potently inhibit HCV IRES-linked gene expression. To assess in vivo liver delivery and activity, the HCV-directed sshRNA SG220 was formulated into lipid nanoparticles (LNP) and injected i.v. into mice whose livers supported stable HCV IRES-luciferase expression from a liver-specific promoter. After a single injection, RNase protection assays for the sshRNA and 3H labeling of a lipid component of the nanoparticles showed efficient liver uptake of both components and long-lasting survival of a significant fraction of the sshRNA in the liver. In vivo imaging showed a dose-dependent inhibition of luciferase expression (>90% 1 day after injection of 2.5 mg/kg sshRNA) with t1/2 for recovery of about 3 weeks. These results demonstrate the ability of moderate levels of i.v.-injected, LNP-formulated sshRNAs to be taken up by liver hepatocytes at a level sufficient to substantially suppress gene expression. Suppression is rapid and durable, suggesting that sshRNAs may have promise as therapeutic agents for liver indications.


Nucleic Acids Research | 2008

Hairpin ribozyme-antisense RNA constructs can act as molecular lassos

Anne Dallas; Svetlana V. Balatskaya; Tai Chih Kuo; Heini Ilves; Alexander V. Vlassov; Roger L. Kaspar; Kevin O. Kisich; Sergei A. Kazakov; Brian H. Johnston

We have developed a novel class of antisense agents, RNA Lassos, which are capable of binding to and circularizing around complementary target RNAs. The RNA Lasso consists of a fixed sequence derived from the hairpin ribozyme and an antisense segment whose size and sequence can be varied to base pair with accessible sites in the target RNA. The ribozyme catalyzes self-processing of the 5′- and 3′-ends of a transcribed Lasso precursor and ligates the processed ends to produce a circular RNA. The circular and linear forms of the self-processed Lasso coexist in an equilibrium that is dependent on both the Lasso sequence and the solution conditions. Lassos form strong, noncovalent complexes with linear target RNAs and form true topological linkages with circular targets. Lasso complexes with linear RNA targets were detected by denaturing gel electrophoresis and were found to be more stable than ordinary RNA duplexes. We show that expression of a fusion mRNA consisting of a sequence from the murine tumor necrosis factor-α (TNF-α) gene linked to luciferase reporter can be specifically and efficiently blocked by an anti-TNF Lasso. We also show in cell culture experiments that Lassos directed against Fas pre-mRNA were able to induce a change in alternative splicing patterns.


Tissue Engineering Part A | 2018

Acceleration of Diabetic Wound Healing with PHD2- and miR-210-targeting Oligonucleotides

Anne Dallas; Artem Trotsyuk; Heini Ilves; Clark A. Bonham; Melanie Rodrigues; Karl W. Engel; Janos Barrera; Miss Nina Kosaric; Zachary Stern-Buchbinder; Miss Aleksandr White; Kenneth Jason Mandell; Paula T. Hammond; Jonathan N Mansbridge; Sumedha Jayasena; Geoffrey C. Gurtner; Brian H. Johnston

In diabetes-associated chronic wounds, the normal response to hypoxia is impaired and many cellular processes involved in wound healing are hindered. Central to the hypoxia response is hypoxia-inducible factor-1α (HIF-1α), which activates multiple factors that enhance wound healing by promoting cellular motility and proliferation, new vessel formation, and re-epithelialization. Prolyl hydroxylase domain-containing protein 2 (PHD2) regulates HIF-1α activity by targeting it for degradation under normoxia. HIF-1α also upregulates microRNA miR-210, which in turn regulates proteins involved in cell cycle control, DNA repair, and mitochondrial respiration in ways that are antagonistic to wound repair. We have identified a highly potent short synthetic hairpin RNA (sshRNA) that inhibits expression of PHD2 and an antisense oligonucleotide (antimiR) that inhibits miR-210. Both oligonucleotides were chemically modified for improved biostability and to mitigate potential immunostimulatory effects. Using the sshRNA to silence PHD2 transcripts stabilizes HIF-1α and, in combination with the antimiR targeting miR-210, increases proliferation and migration of keratinocytes in vitro. To assess activity and delivery in an impaired wound healing model in diabetic mice, PHD2-targeting sshRNAs and miR-210 antimiRs both alone and in combination were formulated for local delivery to wounds using layer-by-layer (LbL) technology. LbL nanofabrication was applied to incorporate sshRNA into a thin polymer coating on a Tegaderm mesh. This coating gradually degrades under physiological conditions, releasing sshRNA and antimiR for sustained cellular uptake. Formulated treatments were applied directly to splinted full-thickness excisional wounds in db/db mice. Cellular uptake was confirmed using fluorescent sshRNA. Wounds treated with a single application of PHD2 sshRNA or antimiR-210 closed 4 days faster than untreated wounds, and wounds treated with both oligonucleotides closed on average 4.75 days faster. Markers for neovascularization and cell proliferation (CD31 and Ki67, respectively) were increased in the wound area following treatment, and vascular endothelial growth factor (VEGF) was increased in sshRNA-treated wounds. Our results suggest that silencing of PHD2 and miR-210 either together or separately by localized delivery of sshRNAs and antimiRs is a promising approach for the treatment of chronic wounds, with the potential for rapid clinical translation.


RNA | 2010

Minimal-length short hairpin RNAs: The relationship of structure and RNAi activity

Qing Ge; Heini Ilves; Anne Dallas; Pavan Kumar; Joshua Shorenstein; Sergei A. Kazakov; Brian H. Johnston


RNA | 2010

Effects of chemical modification on the potency, serum stability, and immunostimulatory properties of short shRNAs

Qing Ge; Anne Dallas; Heini Ilves; Joshua Shorenstein; Mark A. Behlke; Brian H. Johnston

Collaboration


Dive into the Heini Ilves's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander V. Vlassov

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Devin Leake

Thermo Fisher Scientific

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge