Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian J. Bennett is active.

Publication


Featured researches published by Brian J. Bennett.


Nature | 2011

Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease

Zeneng Wang; Elizabeth Klipfell; Brian J. Bennett; Robert A. Koeth; Bruce S. Levison; Brandon DuGar; Ariel E. Feldstein; Earl B. Britt; Xiaoming Fu; Yoon-Mi Chung; Phil Schauer; Jonathan D. Smith; Hooman Allayee; W.H. Wilson Tang; Joseph A. DiDonato; Aldons J. Lusis; Stanley L. Hazen

Metabolomics studies hold promise for the discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. Here we used a metabolomics approach to generate unbiased small-molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid phosphatidylcholine—choline, trimethylamine N-oxide (TMAO) and betaine—were identified and then shown to predict risk for CVD in an independent large clinical cohort. Dietary supplementation of mice with choline, TMAO or betaine promoted upregulation of multiple macrophage scavenger receptors linked to atherosclerosis, and supplementation with choline or TMAO promoted atherosclerosis. Studies using germ-free mice confirmed a critical role for dietary choline and gut flora in TMAO production, augmented macrophage cholesterol accumulation and foam cell formation. Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary-choline-enhanced atherosclerosis. Genetic variations controlling expression of flavin monooxygenases, an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidaemic mice. Discovery of a relationship between gut-flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for the development of new diagnostic tests and therapeutic approaches for atherosclerotic heart disease.


Circulation Research | 2008

Ambient Particulate Pollutants in the Ultrafine Range Promote Early Atherosclerosis and Systemic Oxidative Stress

Jesus A. Araujo; Berenice Barajas; Michael T. Kleinman; Xuping Wang; Brian J. Bennett; Ke Wei Gong; Mohamad Navab; Jack R. Harkema; Constantinos Sioutas; Aldons J. Lusis; Andre E. Nel

Air pollution is associated with significant adverse health effects, including increased cardiovascular morbidity and mortality. Exposure to particulate matter with an aerodynamic diameter of <2.5 &mgr;m (PM2.5) increases ischemic cardiovascular events and promotes atherosclerosis. Moreover, there is increasing evidence that the smallest pollutant particles pose the greatest danger because of their high content of organic chemicals and prooxidative potential. To test this hypothesis, we compared the proatherogenic effects of ambient particles of <0.18 &mgr;m (ultrafine particles) with particles of <2.5 &mgr;m in genetically susceptible (apolipoprotein E–deficient) mice. These animals were exposed to concentrated ultrafine particles, concentrated particles of <2.5 &mgr;m, or filtered air in a mobile animal facility close to a Los Angeles freeway. Ultrafine particle–exposed mice exhibited significantly larger early atherosclerotic lesions than mice exposed to PM2.5 or filtered air. Exposure to ultrafine particles also resulted in an inhibition of the antiinflammatory capacity of plasma high-density lipoprotein and greater systemic oxidative stress as evidenced by a significant increase in hepatic malondialdehyde levels and upregulation of Nrf2-regulated antioxidant genes. We conclude that ultrafine particles concentrate the proatherogenic effects of ambient PM and may constitute a significant cardiovascular risk factor.


Cell Metabolism | 2013

Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation.

Brian J. Bennett; Thomas Q. de Aguiar Vallim; Zeneng Wang; Diana M. Shih; Yonghong Meng; Jill C. Gregory; Hooman Allayee; Richard G. Lee; Mark J. Graham; Rosanne M. Crooke; Peter A. Edwards; Stanley L. Hazen; Aldons J. Lusis

Circulating trimethylamine-N-oxide (TMAO) levels are strongly associated with atherosclerosis. We now examine genetic, dietary, and hormonal factors regulating TMAO levels. We demonstrate that two flavin mono-oxygenase family members, FMO1 and FMO3, oxidize trimethylamine (TMA), derived from gut flora metabolism of choline, to TMAO. Further, we show that FMO3 exhibits 10-fold higher specific activity than FMO1. FMO3 overexpression in mice significantly increases plasma TMAO levels while silencing FMO3 decreases TMAO levels. In both humans and mice, hepatic FMO3 expression is reduced in males compared to females. In mice, this reduction in FMO3 expression is due primarily to downregulation by androgens. FMO3 expression is induced by dietary bile acids by a mechanism that involves the farnesoid X receptor (FXR), a bile acid-activated nuclear receptor. Analysis of natural genetic variation among inbred strains of mice indicates that FMO3 and TMAO are significantly correlated, and TMAO levels explain 11% of the variation in atherosclerosis.


Cell Metabolism | 2013

Genetic Control of Obesity and Gut Microbiota Composition in Response to High-Fat, High-Sucrose Diet in Mice

Brian W. Parks; Elizabeth Nam; Elin Org; Emrah Kostem; Frode Norheim; Simon T. Hui; Calvin Pan; Mete Civelek; Christoph Rau; Brian J. Bennett; Margarete Mehrabian; Luke K. Ursell; Aiqing He; Lawrence W. Castellani; Bradley A. Zinker; Mark S. Kirby; Thomas A. Drake; Christian A. Drevon; Rob Knight; Peter S. Gargalovic; Todd G. Kirchgessner; Eleazar Eskin; Aldons J. Lusis

Obesity is a highly heritable disease driven by complex interactions between genetic and environmental factors. Human genome-wide association studies (GWAS) have identified a number of loci contributing to obesity; however, a major limitation of these studies is the inability to assess environmental interactions common to obesity. Using a systems genetics approach, we measured obesity traits, global gene expression, and gut microbiota composition in response to a high-fat/high-sucrose (HF/HS) diet of more than 100 inbred strains of mice. Here we show that HF/HS feeding promotes robust, strain-specific changes in obesity that are not accounted for by food intake and provide evidence for a genetically determined set point for obesity. GWAS analysis identified 11 genome-wide significant loci associated with obesity traits, several of which overlap with loci identified in human studies. We also show strong relationships between genotype and gut microbiota plasticity during HF/HS feeding and identify gut microbial phylotypes associated with obesity.


Genome Research | 2010

A high-resolution association mapping panel for the dissection of complex traits in mice.

Brian J. Bennett; Charles R. Farber; Luz Orozco; Hyun Min Kang; Anatole Ghazalpour; Nathan O. Siemers; Michael G. Neubauer; Isaac M. Neuhaus; Roumyana Yordanova; Bo Guan; Amy Truong; Wen Pin Yang; Aiqing He; Paul S. Kayne; Peter S. Gargalovic; Todd G. Kirchgessner; Calvin Pan; Lawrence W. Castellani; Emrah Kostem; Nicholas A. Furlotte; Thomas A. Drake; Eleazar Eskin; Aldons J. Lusis

Systems genetics relies on common genetic variants to elucidate biologic networks contributing to complex disease-related phenotypes. Mice are ideal model organisms for such approaches, but linkage analysis has been only modestly successful due to low mapping resolution. Association analysis in mice has the potential of much better resolution, but it is confounded by population structure and inadequate power to map traits that explain less than 10% of the variance, typical of mouse quantitative trait loci (QTL). We report a novel strategy for association mapping that combines classic inbred strains for mapping resolution and recombinant inbred strains for mapping power. Using a mixed model algorithm to correct for population structure, we validate the approach by mapping over 2500 cis-expression QTL with a resolution an order of magnitude narrower than traditional QTL analysis. We also report the fine mapping of metabolic traits such as plasma lipids. This resource, termed the Hybrid Mouse Diversity Panel, makes possible the integration of multiple data sets and should prove useful for systems-based approaches to complex traits and studies of gene-by-environment interactions.


Journal of Biological Chemistry | 2015

Transmission of Atherosclerosis Susceptibility with Gut Microbial Transplantation

Jill C. Gregory; Jennifer A. Buffa; Elin Org; Zeneng Wang; Bruce S. Levison; Weifei Zhu; Matthew A. Wagner; Brian J. Bennett; Lin Li; Joseph A. DiDonato; Aldons J. Lusis; Stanley L. Hazen

Background: Recent human and animal studies suggest that gut microbes can influence atherosclerosis via generation of trimethylamine N-oxide (TMAO). Results: Cecal microbial transplantation from atherosclerosis-prone versus -resistant inbred strains of mice transmitted enhanced choline diet-dependent atherosclerosis and TMAO levels. Conclusion: Atherosclerosis susceptibility can be transmitted with gut microbial transplantation. Significance: Gut microbes participate in atherosclerosis susceptibility and are thus a potential therapeutic target. Recent studies indicate both clinical and mechanistic links between atherosclerotic heart disease and intestinal microbial metabolism of certain dietary nutrients producing trimethylamine N-oxide (TMAO). Here we test the hypothesis that gut microbial transplantation can transmit choline diet-induced TMAO production and atherosclerosis susceptibility. First, a strong association was noted between atherosclerotic plaque and plasma TMAO levels in a mouse diversity panel (n = 22 strains, r = 0.38; p = 0.0001). An atherosclerosis-prone and high TMAO-producing strain, C57BL/6J, and an atherosclerosis-resistant and low TMAO-producing strain, NZW/LacJ, were selected as donors for cecal microbial transplantation into apolipoprotein e null mice in which resident intestinal microbes were first suppressed with antibiotics. Trimethylamine (TMA) and TMAO levels were initially higher in recipients on choline diet that received cecal microbes from C57BL/6J inbred mice; however, durability of choline diet-dependent differences in TMA/TMAO levels was not maintained to the end of the study. Mice receiving C57BL/6J cecal microbes demonstrated choline diet-dependent enhancement in atherosclerotic plaque burden as compared with recipients of NZW/LacJ microbes. Microbial DNA analyses in feces and cecum revealed transplantation of donor microbial community features into recipients with differences in taxa proportions between donor strains that were transmissible to recipients and that tended to show coincident proportions with TMAO levels. Proportions of specific taxa were also identified that correlated with plasma TMAO levels in donors and recipients and with atherosclerotic lesion area in recipients. Atherosclerosis susceptibility may be transmitted via transplantation of gut microbiota. Gut microbes may thus represent a novel therapeutic target for modulating atherosclerosis susceptibility.


Circulation Research | 2010

Inhibition of Bone Morphogenetic Proteins Protects Against Atherosclerosis and Vascular Calcification

Yucheng Yao; Brian J. Bennett; Xuping Wang; Michael E. Rosenfeld; Cecilia M. Giachelli; Aldons J. Lusis

Rationale The bone morphogenetic proteins (BMPs), a family of morphogens, have been implicated as mediators of calcification and inflammation in the vascular wall. Objective To investigate the effect of altered expression of matrix Gla protein (MGP), an inhibitor of BMP, on vascular disease. Methods and Results We used MGP transgenic or MGP-deficient mice bred to apolipoprotein E mice, a model of atherosclerosis. MGP overexpression reduced vascular BMP activity, atherosclerotic lesion size, intimal and medial calcification, and inflammation. It also reduced expression of the activin-like kinase receptor 1 and the vascular endothelial growth factor, part of a BMP-activated pathway that regulates angiogenesis and may enhance lesion formation and calcification. Conversely, MGP deficiency increased BMP activity, which may explain the diffuse calcification of vascular medial cells in MGP deficient aortas and the increase in expression of activin-like kinase receptor 1 and vascular endothelial growth factor. Unexpectedly, atherosclerotic lesion formation was decreased in MGP-deficient mice, which may be explained by a dramatic reduction in expression of endothelial adhesion molecules limiting monocyte infiltration of the artery wall. Conclusions Our results indicate that BMP signaling is a key regulator of vascular disease, requiring careful control to maintain normal vascular homeostasis.


Journal of Lipid Research | 2015

Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis

Diana M. Shih; Zeneng Wang; Richard G. Lee; Yonghong Meng; Nam Che; Sarada Charugundla; Hannah Qi; Judy Wu; Calvin Pan; J. Mark Brown; Thomas Q. de Aguiar Vallim; Brian J. Bennett; Mark J. Graham; Stanley L. Hazen; Aldons J. Lusis

We performed silencing and overexpression studies of flavin containing monooxygenase (FMO) 3 in hyperlipidemic mouse models to examine its effects on trimethylamine N-oxide (TMAO) levels and atherosclerosis. Knockdown of hepatic FMO3 in LDL receptor knockout mice using an antisense oligonucleotide resulted in decreased circulating TMAO levels and atherosclerosis. Surprisingly, we also observed significant decreases in hepatic lipids and in levels of plasma lipids, ketone bodies, glucose, and insulin. FMO3 overexpression in transgenic mice, on the other hand, increased hepatic and plasma lipids. Global gene expression analyses suggested that these effects of FMO3 on lipogenesis and gluconeogenesis may be mediated through the PPARα and Kruppel-like factor 15 pathways. In vivo and in vitro results were consistent with the concept that the effects were mediated directly by FMO3 rather than trimethylamine/TMAO; in particular, overexpression of FMO3 in the human hepatoma cell line, Hep3B, resulted in significantly increased glucose secretion and lipogenesis. Our results indicate a major role for FMO3 in modulating glucose and lipid homeostasis in vivo, and they suggest that pharmacologic inhibition of FMO3 to reduce TMAO levels would be confounded by metabolic interactions.


The American Journal of Clinical Nutrition | 2014

Effect of egg ingestion on trimethylamine-N-oxide production in humans: a randomized, controlled, dose-response study

Carolyn A. Miller; Karen D. Corbin; Kerry Ann Da Costa; Shucha Zhang; Xueqing Zhao; Joseph A. Galanko; Tondra Blevins; Brian J. Bennett; Annalouise O'Connor; Steven H. Zeisel

BACKGROUND It is important to understand whether eating eggs, which are a major source of dietary choline, results in increased exposure to trimethylamine-N-oxide (TMAO), which is purported to be a risk factor for developing heart disease. OBJECTIVE We determined whether humans eating eggs generate TMAO and, if so, whether there is an associated increase in a marker for inflammation [ie, high-sensitivity C-reactive protein (hsCRP)] or increased oxidation of low-density lipoprotein (LDL). DESIGN In a longitudinal, double-blind, randomized dietary intervention, 6 volunteers were fed breakfast doses of 0, 1, 2, 4, or 6 egg yolks. Diets were otherwise controlled on the day before and day of each egg dose with a standardized low-choline menu. Plasma TMAO at timed intervals (immediately before and 1, 2, 4, 8, and 24 h after each dose), 24-h urine TMAO, predose and 24-h postdose serum hsCRP, and plasma oxidized LDL were measured. Volunteers received all 5 doses with each dose separated by >2-wk washout periods. RESULTS The consumption of eggs was associated with increased plasma and urine TMAO concentrations (P < 0.01), with ∼14% of the total choline in eggs having been converted to TMAO. There was considerable variation between individuals in the TMAO response. There was no difference in hsCRP or oxidized LDL concentrations after egg doses. CONCLUSIONS The consumption of ≥2 eggs results in an increased formation of TMAO. Choline is an essential nutrient that is required for normal human liver and muscle functions and important for normal fetal development. Additional study is needed to both confirm the association between TMAO and atherosclerosis and identify factors, microbiota and genetic, that influence the generation of TMAO before policy and medical recommendations are made that suggest reduced dietary choline intake.


PLOS Genetics | 2011

Mouse Genome-Wide Association and Systems Genetics Identify Asxl2 As a Regulator of Bone Mineral Density and Osteoclastogenesis

Charles R. Farber; Brian J. Bennett; Luz Orozco; Wei Zou; Ana Lira; Emrah Kostem; Hyun Min Kang; Nicholas A. Furlotte; Ani Berberyan; Anatole Ghazalpour; Jaijam Suwanwela; Thomas A. Drake; Eleazar Eskin; Q. Tian Wang; Steven L. Teitelbaum; Aldons J. Lusis

Significant advances have been made in the discovery of genes affecting bone mineral density (BMD); however, our understanding of its genetic basis remains incomplete. In the current study, genome-wide association (GWA) and co-expression network analysis were used in the recently described Hybrid Mouse Diversity Panel (HMDP) to identify and functionally characterize novel BMD genes. In the HMDP, a GWA of total body, spinal, and femoral BMD revealed four significant associations (−log10P>5.39) affecting at least one BMD trait on chromosomes (Chrs.) 7, 11, 12, and 17. The associations implicated a total of 163 genes with each association harboring between 14 and 112 genes. This list was reduced to 26 functional candidates by identifying those genes that were regulated by local eQTL in bone or harbored potentially functional non-synonymous (NS) SNPs. This analysis revealed that the most significant BMD SNP on Chr. 12 was a NS SNP in the additional sex combs like-2 (Asxl2) gene that was predicted to be functional. The involvement of Asxl2 in the regulation of bone mass was confirmed by the observation that Asxl2 knockout mice had reduced BMD. To begin to unravel the mechanism through which Asxl2 influenced BMD, a gene co-expression network was created using cortical bone gene expression microarray data from the HMDP strains. Asxl2 was identified as a member of a co-expression module enriched for genes involved in the differentiation of myeloid cells. In bone, osteoclasts are bone-resorbing cells of myeloid origin, suggesting that Asxl2 may play a role in osteoclast differentiation. In agreement, the knockdown of Asxl2 in bone marrow macrophages impaired their ability to form osteoclasts. This study identifies a new regulator of BMD and osteoclastogenesis and highlights the power of GWA and systems genetics in the mouse for dissecting complex genetic traits.

Collaboration


Dive into the Brian J. Bennett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luz Orozco

University of California

View shared research outputs
Top Co-Authors

Avatar

Calvin Pan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eleazar Eskin

University of California

View shared research outputs
Top Co-Authors

Avatar

Hooman Allayee

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Tangi Smallwood

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge