Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian J. Eilers is active.

Publication


Featured researches published by Brian J. Eilers.


Journal of Biological Chemistry | 2009

Structural and Functional Studies of Archaeal Viruses

C. Martin Lawrence; Smita Menon; Brian J. Eilers; Brian Bothner; Reza Khayat; Trevor Douglas; Mark J. Young

Viruses populate virtually every ecosystem on the planet, including the extreme acidic, thermal, and saline environments where archaeal organisms can dominate. For example, recent studies have identified crenarchaeal viruses in the hot springs of Yellowstone National Park and other high temperature environments worldwide. These viruses are often morphologically and genetically unique, with genomes that show little similarity to genes of known function, complicating efforts to understand their viral life cycles. Here, we review progress in understanding these fascinating viruses at the molecular level and the evolutionary insights coming from these studies.


Virology | 2008

Cysteine usage in Sulfolobus spindle-shaped virus 1 and extension to hyperthermophilic viruses in general

Smita Menon; Walid S. Maaty; G. Judson Corn; Stanley C. Kwok; Brian J. Eilers; Paul Kraft; Eric Gillitzer; Mark J. Young; Brian Bothner; C. Martin Lawrence

Fuselloviridae are ubiquitous crenarchaeal viruses found in high-temperature acidic hot springs worldwide. The type virus, Sulfolobus spindle-shaped virus 1 (SSV1), has a double-stranded DNA genome that contains 34 open reading frames (ORFs). Fuselloviral genomes show little similarity to other organisms, generally precluding functional predictions. However, tertiary protein structure can provide insight into protein function. We have thus undertaken a systematic investigation of the SSV1 proteome and report here on the F112 gene product. Biochemical, proteomic and structural studies reveal a monomeric intracellular protein that adopts a winged helix DNA binding fold. Notably, the structure contains an intrachain disulfide bond, prompting analysis of cysteine usage in this and other hyperthermophilic viral genomes. The analysis supports a general abundance of disulfide bonds in the intracellular proteins of hyperthermophilic viruses, and reveals decreased cysteine content in the membrane proteins of hyperthermophilic viruses infecting Sulfolobales. The evolutionary implications of the SSV1 distribution are discussed.


Biochemistry | 2016

Evidence That the Pi Release Event Is the Rate-Limiting Step in the Nitrogenase Catalytic Cycle.

Zhi Yong Yang; Rhesa N. Ledbetter; Sudipta Shaw; Natasha Pence; Monika Tokmina-Lukaszewska; Brian J. Eilers; Qingjuan Guo; Nilisha Pokhrel; Valerie L. Cash; Dennis R. Dean; Edwin Antony; Brian Bothner; John W. Peters; Lance C. Seefeldt

Nitrogenase reduction of dinitrogen (N2) to ammonia (NH3) involves a sequence of events that occur upon the transient association of the reduced Fe protein containing two ATP molecules with the MoFe protein that includes electron transfer, ATP hydrolysis, Pi release, and dissociation of the oxidized, ADP-containing Fe protein from the reduced MoFe protein. Numerous kinetic studies using the nonphysiological electron donor dithionite have suggested that the rate-limiting step in this reaction cycle is the dissociation of the Fe protein from the MoFe protein. Here, we have established the rate constants for each of the key steps in the catalytic cycle using the physiological reductant flavodoxin protein in its hydroquinone state. The findings indicate that with this reductant, the rate-limiting step in the reaction cycle is not protein-protein dissociation or reduction of the oxidized Fe protein, but rather events associated with the Pi release step. Further, it is demonstrated that (i) Fe protein transfers only one electron to MoFe protein in each Fe protein cycle coupled with hydrolysis of two ATP molecules, (ii) the oxidized Fe protein is not reduced when bound to MoFe protein, and (iii) the Fe protein interacts with flavodoxin using the same binding interface that is used with the MoFe protein. These findings allow a revision of the rate-limiting step in the nitrogenase Fe protein cycle.


Journal of Virology | 2010

The Crystal Structure of D212 from Sulfolobus Spindle-Shaped Virus Ragged Hills Reveals a New Member of the PD-(D/E)XK Nuclease Superfamily

Smita Menon; Brian J. Eilers; Mark J. Young; C.M. Lawrence

ABSTRACT Structural studies have made significant contributions to our understanding of Sulfolobus spindle-shaped viruses (Fuselloviridae), an important model system for archaeal viruses. Continuing these efforts, we report the structure of D212 from Sulfolobus spindle-shaped virus Ragged Hills. The overall fold and conservation of active site residues place D212 in the PD-(D/E)XK nuclease superfamily. The greatest structural similarity is found to the archaeal Holliday junction cleavage enzymes, strongly suggesting a role in DNA replication, repair, or recombination. Other roles associated with nuclease activity are also considered.


Biochemistry | 2014

Solution Structure and Molecular Determinants of Hemoglobin Binding of the first NEAT Domain of IsdB in Staphylococcus aureus

Brittany A. Fonner; Brian Tripet; Brian J. Eilers; Jessica Stanisich; Rose K. Sullivan-Springhetti; Rebecca Moore; Mengyao Liu; Benfang Lei; Valérie Copié

The human pathogen Staphylococcus aureus acquires heme iron from hemoglobin (Hb) via the action of a series of iron-regulated surface determinant (Isd) proteins. The cell wall anchored IsdB protein is recognized as the predominant Hb receptor, and is comprised of two NEAr transporter (NEAT) domains that act in concert to bind, extract, and transfer heme from Hb to downstream Isd proteins. Structural details of the NEAT 2 domain of IsdB have been investigated, but the molecular coordination between NEAT 2 and NEAT 1 to extract heme from hemoglobin has yet to be characterized. To obtain a more complete understanding of IsdB structure and function, we have solved the 3D solution structure of the NEAT 1 domain of IsdB (IsdBN1) spanning residues 125–272 of the full-length protein by NMR. The structure reveals a canonical NEAT domain fold and has particular structural similarity to the NEAT 1 and NEAT 2 domains of IsdH, which also interact with Hb. IsdBN1 is also comprised of a short N-terminal helix, which has not been previously observed in other NEAT domain structures. Interestingly, the Hb binding region (loop 2 of IsdBN1) is disordered in solution. Analysis of Hb binding demonstrates that IsdBN1 can bind metHb weakly and the affinity of this interaction is further increased by the presence of IsdB linker domain. IsdBN1 loop 2 variants reveal that phenylalanine 164 (F164) of IsdB is necessary for Hb binding and rapid heme transfer from metHb to IsdB. Together, these findings provide a structural role for IsdBN1 in enhancing the rate of extraction of metHb heme by the IsdB NEAT 2 domain.


Journal of Virology | 2012

The Structure of an Archaeal Viral Integrase Reveals an Evolutionarily Conserved Catalytic Core yet Supports a Mechanism of DNA Cleavage in trans

Brian J. Eilers; Mark J. Young; C.M. Lawrence

ABSTRACT The first structure of a catalytic domain from a hyperthermophilic archaeal viral integrase reveals a minimal fold similar to that of bacterial HP1 integrase and defines structural elements conserved across three domains of life. However, structural superposition on bacterial Holliday junction complexes and similarities in the C-terminal tail with that of eukaryotic Flp suggest that the catalytic tyrosine and an additional active-site lysine are delivered to neighboring subunits in trans. An intramolecular disulfide bond contributes significant thermostability in vitro.


Biochemistry | 2014

Structural and Biochemical Analysis of the Hordeum vulgare L. HvGR-RBP1 Protein, a Glycine-Rich RNA-Binding Protein Involved in the Regulation of Barley Plant Development and Stress Response.

Brian Tripet; Katelyn E. Mason; Brian J. Eilers; Jennifer Burns; Paul Powell; Andreas M. Fischer; Valérie Copié

The timing of whole-plant senescence influences important agricultural traits such as yield and grain protein content. Post-transcriptional regulation by plant RNA-binding proteins is essential for proper control of gene expression, development, and stress responses. Here, we report the three-dimensional solution NMR structure and nucleic acid-binding properties of the barley glycine-rich RNA-binding protein HvGR-RBP1, whose transcript has been identified as being >45-fold up-regulated in early—as compared to late—senescing near-isogenic barley germplasm. NMR analysis reveals that HvGR-RBP1 is a multidomain protein comprising a well-folded N-terminal RNA Recognition Motif (RRM) and a structurally disordered C-terminal glycine-rich domain. Chemical shift differences observed in 2D 1H–15N correlation (HSQC) NMR spectra of full-length HvGR-RBP1 and N-HvGR-RBP1 (RRM domain only) suggest that the two domains can interact both in-trans and intramolecularly, similar to what is observed in the tobacco NtGR-RBP1 protein. Further, we show that the RRM domain of HvGR-RBP1 binds single-stranded DNA nucleotide fragments containing the consensus nucleotide sequence 5′-TTCTGX-3′ with low micromolar affinity in vitro. We also demonstrate that the C-terminal glycine-rich (HvGR) domain of Hv-GR-RBP1 can interact nonspecifically with ssRNA in vitro. Structural similarities with other plant glycine-rich RNA-binding proteins suggest that HvGR-RBP1 may be multifunctional. Based on gene expression analysis following cold stress in barley and E. coli growth studies following cold shock treatment, we conclude that HvGR-RBP1 functions in a manner similar to cold-shock proteins and harbors RNA chaperone activity. HvGR-RBP1 is therefore not only involved in the regulation of barley development including senescence, but also functions in plant responses to environmental stress.


Journal of Inorganic Biochemistry | 2018

Structural characterization of the nitrogenase molybdenum-iron protein with the substrate acetylene trapped near the active site

Stephen Keable; Jacopo Vertemara; Oleg A. Zadvornyy; Brian J. Eilers; Karamatullah Danyal; Andrew J. Rasmussen; Luca De Gioia; Giuseppe Zampella; Lance C. Seefeldt; John W. Peters

The biological reduction of dinitrogen (N2) to ammonia is catalyzed by the complex metalloenzyme nitrogenase. Structures of the nitrogenase component proteins, Iron (Fe) protein and Molybdenum‑iron (MoFe) protein, and the stabilized complexes these component proteins, have been determined, providing a foundation for a number of fundamental aspects of the complicated catalytic mechanism. The reduction of dinitrogen to ammonia is a complex process that involves the binding of N2 followed by reduction with multiple electrons and protons. Electron transfer into nitrogenase is typically constrained to the unique electron donor, the Fe protein. These constraints have prevented structural characterization of the active site with bound substrate. Recently it has been realized that selected amino acid substitutions in the environment of the active site metal cluster (Iron‑molybdenum cofactor, FeMo-co) allow substrates to persist even in the resting state. Reported here is a 1.70Å crystal structure of a nitrogenase MoFe protein α-96Arg➔Gln variant with the alternative substrate acetylene trapped in a channel in close proximity to FeMo-co. Complementary theoretical calculations support the validity of the acetylene interaction at this site and is also consistent with more favorable interactions in the variant MoFe protein compared to the native MoFe protein. This work represents the first structural evidence of a substrate trapped in the nitrogenase MoFe protein and is consistent with earlier assignments of proposed substrate pathways and substrate binding sites deduced from biochemical, spectroscopic, and theoretical studies.


Scientific Reports | 2017

Structural Basis for the Mechanism of ATP-Dependent Acetone Carboxylation

Florence Mus; Brian J. Eilers; Alexander B. Alleman; Burak V. Kabasakal; Jennifer N. Wells; James W. Murray; Boguslaw Nocek; Jennifer L. DuBois; John W. Peters

Microorganisms use carboxylase enzymes to form new carbon-carbon bonds by introducing carbon dioxide gas (CO2) or its hydrated form, bicarbonate (HCO3−), into target molecules. Acetone carboxylases (ACs) catalyze the conversion of substrates acetone and HCO3− to form the product acetoacetate. Many bicarbonate-incorporating carboxylases rely on the organic cofactor biotin for the activation of bicarbonate. ACs contain metal ions but not organic cofactors, and use ATP to activate substrates through phosphorylation. How the enzyme coordinates these phosphorylation events and new C-C bond formation in the absence of biotin has remained a mystery since these enzymes were discovered. The first structural rationale for acetone carboxylation is presented here, focusing on the 360 kDa (αβγ)2 heterohexameric AC from Xanthobacter autotrophicus in the ligand-free, AMP-bound, and acetate coordinated states. These structures suggest successive steps in a catalytic cycle revealing that AC undergoes large conformational changes coupled to substrate activation by ATP to perform C-C bond ligation at a distant Mn center. These results illustrate a new chemical strategy for the conversion of CO2 into biomass, a process of great significance to the global carbon cycle.


Virology | 2007

A winged-helix protein from sulfolobus turreted icosahedral virus points toward stabilizing disulfide bonds in the intracellular proteins of a hyperthermophilic virus

Eric Larson; Brian J. Eilers; Smita Menon; D. Reiter; Alice C. Ortmann; Mark J. Young; C.M. Lawrence

Collaboration


Dive into the Brian J. Eilers's collaboration.

Top Co-Authors

Avatar

Mark J. Young

Montana State University

View shared research outputs
Top Co-Authors

Avatar

John W. Peters

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Smita Menon

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Bothner

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Keable

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge