Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian J. Raney is active.

Publication


Featured researches published by Brian J. Raney.


Nucleic Acids Research | 2006

The UCSC genome browser database: update 2007

Robert M. Kuhn; Donna Karolchik; Ann S. Zweig; Heather Trumbower; Daryl J. Thomas; Archana Thakkapallayil; Charles W. Sugnet; Mario Stanke; Kayla E. Smith; Adam Siepel; Kate R. Rosenbloom; Brooke Rhead; Brian J. Raney; Andrew A. Pohl; Jakob Skou Pedersen; Fan Hsu; Angie S. Hinrichs; Rachel A. Harte; Mark Diekhans; Hiram Clawson; Gill Bejerano; Galt P. Barber; Robert Baertsch; David Haussler; William Kent

The UCSC Genome Browser Database (GBD, http://genome.ucsc.edu) is a publicly available collection of genome assembly sequence data and integrated annotations for a large number of organisms, including extensive comparative-genomic resources. In the past year, 13 new genome assemblies have been added, including two important primate species, orangutan and marmoset, bringing the total to 46 assemblies for 24 different vertebrates and 39 assemblies for 22 different invertebrate animals. The GBD datasets may be viewed graphically with the UCSC Genome Browser, which uses a coordinate-based display system allowing users to juxtapose a wide variety of data. These data include all mRNAs from GenBank mapped to all organisms, RefSeq alignments, gene predictions, regulatory elements, gene expression data, repeats, SNPs and other variation data, as well as pairwise and multiple-genome alignments. A variety of other bioinformatics tools are also provided, including BLAT, the Table Browser, the Gene Sorter, the Proteome Browser, VisiGene and Genome Graphs.


Nucleic Acids Research | 2012

The UCSC Genome Browser database: extensions and updates 2011

Timothy R. Dreszer; Donna Karolchik; Ann S. Zweig; Angie S. Hinrichs; Brian J. Raney; Robert M. Kuhn; Laurence R. Meyer; Matthew C. Wong; Cricket A. Sloan; Kate R. Rosenbloom; Greg Roe; Brooke Rhead; Andy Pohl; Venkat S. Malladi; Chin H. Li; Katrina Learned; Vanessa M. Kirkup; Fan Hsu; Rachel A. Harte; Luvina Guruvadoo; Mary Goldman; Belinda Giardine; Pauline A. Fujita; Mark Diekhans; Melissa S. Cline; Hiram Clawson; Galt P. Barber; David Haussler; W. James Kent

The University of California Santa Cruz Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a wide variety of organisms. The Browser is an integrated tool set for visualizing, comparing, analyzing and sharing both publicly available and user-generated genomic data sets. In the past year, the local database has been updated with four new species assemblies, and we anticipate another four will be released by the end of 2011. Further, a large number of annotation tracks have been either added, updated by contributors, or remapped to the latest human reference genome. Among these are new phenotype and disease annotations, UCSC genes, and a major dbSNP update, which required new visualization methods. Growing beyond the local database, this year we have introduced ‘track data hubs’, which allow the Genome Browser to provide access to remotely located sets of annotations. This feature is designed to significantly extend the number and variety of annotation tracks that are publicly available for visualization and analysis from within our site. We have also introduced several usability features including track search and a context-sensitive menu of options available with a right-click anywhere on the Browsers image.


Nature | 2011

A high-resolution map of human evolutionary constraint using 29 mammals

Kerstin Lindblad-Toh; Manuel Garber; Or Zuk; Michael F. Lin; Brian J. Parker; Stefan Washietl; Pouya Kheradpour; Jason Ernst; Gregory Jordan; Evan Mauceli; Lucas D. Ward; Craig B. Lowe; Alisha K. Holloway; Michele Clamp; Sante Gnerre; Jessica Alföldi; Kathryn Beal; Jean Chang; Hiram Clawson; James Cuff; Federica Di Palma; Stephen Fitzgerald; Paul Flicek; Mitchell Guttman; Melissa J. Hubisz; David B. Jaffe; Irwin Jungreis; W. James Kent; Dennis Kostka; Marcia Lara

The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ∼4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ∼60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.


Nucleic Acids Research | 2014

The UCSC Genome Browser database: 2014 update

Donna Karolchik; Galt P. Barber; Jonathan Casper; Hiram Clawson; Melissa S. Cline; Mark Diekhans; Timothy R. Dreszer; Pauline A. Fujita; Luvina Guruvadoo; Maximilian Haeussler; Rachel A. Harte; Steven G. Heitner; Angie S. Hinrichs; Katrina Learned; Brian T. Lee; Chin H. Li; Brian J. Raney; Brooke Rhead; Kate R. Rosenbloom; Cricket A. Sloan; Matthew L. Speir; Ann S. Zweig; David Haussler; Robert M. Kuhn; W. James Kent

The University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a large collection of organisms, primarily vertebrates, with an emphasis on the human and mouse genomes. The Browser’s web-based tools provide an integrated environment for visualizing, comparing, analysing and sharing both publicly available and user-generated genomic data sets. As of September 2013, the database contained genomic sequence and a basic set of annotation ‘tracks’ for ∼90 organisms. Significant new annotations include a 60-species multiple alignment conservation track on the mouse, updated UCSC Genes tracks for human and mouse, and several new sets of variation and ENCODE data. New software tools include a Variant Annotation Integrator that returns predicted functional effects of a set of variants uploaded as a custom track, an extension to UCSC Genes that displays haplotype alleles for protein-coding genes and an expansion of data hubs that includes the capability to display remotely hosted user-provided assembly sequence in addition to annotation data. To improve European access, we have added a Genome Browser mirror (http://genome-euro.ucsc.edu) hosted at Bielefeld University in Germany.


Nucleic Acids Research | 2007

The UCSC Genome Browser Database: 2008 update

Donna Karolchik; Robert M. Kuhn; Robert Baertsch; Galt P. Barber; Hiram Clawson; Mark Diekhans; Belinda Giardine; Rachel A. Harte; Angie S. Hinrichs; Fan Hsu; K. M. Kober; Webb Miller; Jakob Skou Pedersen; Andy Pohl; Brian J. Raney; Brooke Rhead; Kate R. Rosenbloom; Kayla E. Smith; Mario Stanke; Archana Thakkapallayil; Heather Trumbower; Ting Wang; Ann S. Zweig; David Haussler; William Kent

The University of California, Santa Cruz, Genome Browser Database (GBD) provides integrated sequence and annotation data for a large collection of vertebrate and model organism genomes. Seventeen new assemblies have been added to the database in the past year, for a total coverage of 19 vertebrate and 21 invertebrate species as of September 2007. For each assembly, the GBD contains a collection of annotation data aligned to the genomic sequence. Highlights of this year’s additions include a 28-species human-based vertebrate conservation annotation, an enhanced UCSC Genes set, and more human variation, MGC, and ENCODE data. The database is optimized for fast interactive performance with a set of web-based tools that may be used to view, manipulate, filter and download the annotation data. New toolset features include the Genome Graphs tool for displaying genome-wide data sets, session saving and sharing, better custom track management, expanded Genome Browser configuration options and a Genome Browser wiki site. The downloadable GBD data, the companion Genome Browser toolset and links to documentation and related information can be found at: http://genome.ucsc.edu/. INTRODUCTION Fundamental to expanding our knowledge of how the human body works in health and in disease is the capability to access and share data produced through experimentation and computational analysis. The University of California, Santa Cruz (UCSC) Genome Browser Database (GBD) (http://genome.ucsc.edu) (1) provides a common repository for genomic annotation data—including comparative genomics, genes and gene predictions; mRNA and EST alignments; and expression, regulation, variation and assembly data—and robust, flexible tools for viewing, comparing, distributing and analyzing the information. Produced and maintained by the Genome Bioinformatics Group at the UCSC Center for Biomolecular Science and Engineering, the GBD focuses primarily on vertebrate and model organism genomes, with an emphasis on comparative genomics analysis. As of September 2007 the GBD contains data for 11 mammalian species including human, mouse, rat, chimpanzee, rhesus macaque, horse, cow, cat, dog, opossum and platypus; 8 other vertebrates: chicken, lizard (Anolis carolinensis), frog (Xenopus tropicalis), zebrafish, fugu, tetraodon, medaka and stickleback; and 21 invertebrates including 11 flies, honeybee, Anopheles mosquito, five worms, one yeast (Saccharomyces cerevisiae) and two deuterostomes—purple sea urchin and sea squirt. For many of the organisms, more than one assembly is provided, and several older archived assemblies may be *To whom correspondence should be addressed. Tel: +1 831 459 1544; Fax: +1 831 459 1809; Email: [email protected] University of California, Santa Cruz, Genome Browser Database (GBD) provides integrated sequence and annotation data for a large collection of vertebrate and model organism genomes. Seventeen new assemblies have been added to the database in the past year, for a total coverage of 19 vertebrate and 21 invertebrate species as of September 2007. For each assembly, the GBD contains a collection of annotation data aligned to the genomic sequence. Highlights of this years additions include a 28-species human-based vertebrate conservation annotation, an enhanced UCSC Genes set, and more human variation, MGC, and ENCODE data. The database is optimized for fast interactive performance with a set of web-based tools that may be used to view, manipulate, filter and download the annotation data. New toolset features include the Genome Graphs tool for displaying genome-wide data sets, session saving and sharing, better custom track management, expanded Genome Browser configuration options and a Genome Browser wiki site. The downloadable GBD data, the companion Genome Browser toolset and links to documentation and related information can be found at: http://genome.ucsc.edu/.


Nucleic Acids Research | 2015

The UCSC Genome Browser database: 2015 update

Kate R. Rosenbloom; Joel Armstrong; Galt P. Barber; Jonathan Casper; Hiram Clawson; Mark Diekhans; Timothy R. Dreszer; Pauline A. Fujita; Luvina Guruvadoo; Maximilian Haeussler; Rachel A. Harte; Steven G. Heitner; Glenn Hickey; Angie S. Hinrichs; Robert Hubley; Donna Karolchik; Katrina Learned; Brian T. Lee; Chin H. Li; Karen H. Miga; Ngan Nguyen; Benedict Paten; Brian J. Raney; Arian Smit; Matthew L. Speir; Ann S. Zweig; David Haussler; Robert M. Kuhn; W. James Kent

Launched in 2001 to showcase the draft human genome assembly, the UCSC Genome Browser database (http://genome.ucsc.edu) and associated tools continue to grow, providing a comprehensive resource of genome assemblies and annotations to scientists and students worldwide. Highlights of the past year include the release of a browser for the first new human genome reference assembly in 4 years in December 2013 (GRCh38, UCSC hg38), a watershed comparative genomics annotation (100-species multiple alignment and conservation) and a novel distribution mechanism for the browser (GBiB: Genome Browser in a Box). We created browsers for new species (Chinese hamster, elephant shark, minke whale), ‘mined the web’ for DNA sequences and expanded the browser display with stacked color graphs and region highlighting. As our user community increasingly adopts the UCSC track hub and assembly hub representations for sharing large-scale genomic annotation data sets and genome sequencing projects, our menu of public data hubs has tripled.


Nature | 2011

Comparative and demographic analysis of orang-utan genomes

Devin P. Locke; LaDeana W. Hillier; Wesley C. Warren; Kim C. Worley; Lynne V. Nazareth; Donna M. Muzny; Shiaw-Pyng Yang; Zhengyuan Wang; Asif T. Chinwalla; Patrick Minx; Makedonka Mitreva; Lisa Cook; Kim D. Delehaunty; Catrina C. Fronick; Heather K. Schmidt; Lucinda A. Fulton; Robert S. Fulton; Joanne O. Nelson; Vincent Magrini; Craig S. Pohl; Tina Graves; Chris Markovic; Andy Cree; Huyen Dinh; Jennifer Hume; Christie Kovar; Gerald Fowler; Gerton Lunter; Stephen Meader; Andreas Heger

‘Orang-utan’ is derived from a Malay term meaning ‘man of the forest’ and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (Ne) expanded exponentially relative to the ancestral Ne after the split, while Bornean Ne declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.


Nucleic Acids Research | 2010

ENCODE whole-genome data in the UCSC Genome Browser

Kate R. Rosenbloom; Timothy R. Dreszer; Michael Pheasant; Galt P. Barber; Laurence R. Meyer; Andy Pohl; Brian J. Raney; Ting Wang; Angie S. Hinrichs; Ann S. Zweig; Pauline A. Fujita; Katrina Learned; Brooke Rhead; Kayla E. Smith; Robert M. Kuhn; Donna Karolchik; David Haussler; W. James Kent

The Encyclopedia of DNA Elements (ENCODE) project is an international consortium of investigators funded to analyze the human genome with the goal of producing a comprehensive catalog of functional elements. The ENCODE Data Coordination Center at The University of California, Santa Cruz (UCSC) is the primary repository for experimental results generated by ENCODE investigators. These results are captured in the UCSC Genome Bioinformatics database and download server for visualization and data mining via the UCSC Genome Browser and companion tools (Rhead et al. The UCSC Genome Browser Database: update 2010, in this issue). The ENCODE web portal at UCSC (http://encodeproject.org or http://genome.ucsc.edu/ENCODE) provides information about the ENCODE data and convenient links for access.


Nature | 2008

Sequencing the nuclear genome of the extinct woolly mammoth

Webb Miller; Daniela I. Drautz; Aakrosh Ratan; Barbara Pusey; Ji Qi; Arthur M. Lesk; Lynn P. Tomsho; Michael Packard; Fangqing Zhao; Andrei Sher; Alexei Tikhonov; Brian J. Raney; Nick Patterson; Kerstin Lindblad-Toh; Eric S. Lander; James Knight; Gerard P. Irzyk; Karin M. Fredrikson; Timothy T. Harkins; Sharon Sheridan; Tom H. Pringle; Stephan C. Schuster

In 1994, two independent groups extracted DNA from several Pleistocene epoch mammoths and noted differences among individual specimens. Subsequently, DNA sequences have been published for a number of extinct species. However, such ancient DNA is often fragmented and damaged, and studies to date have typically focused on short mitochondrial sequences, never yielding more than a fraction of a per cent of any nuclear genome. Here we describe 4.17 billion bases (Gb) of sequence from several mammoth specimens, 3.3 billion (80%) of which are from the woolly mammoth (Mammuthus primigenius) genome and thus comprise an extensive set of genome-wide sequence from an extinct species. Our data support earlier reports that elephantid genomes exceed 4 Gb. The estimated divergence rate between mammoth and African elephant is half of that between human and chimpanzee. The observed number of nucleotide differences between two particular mammoths was approximately one-eighth of that between one of them and the African elephant, corresponding to a separation between the mammoths of 1.5–2.0 Myr. The estimated probability that orthologous elephant and mammoth amino acids differ is 0.002, corresponding to about one residue per protein. Differences were discovered between mammoth and African elephant in amino-acid positions that are otherwise invariant over several billion years of combined mammalian evolution. This study shows that nuclear genome sequencing of extinct species can reveal population differences not evident from the fossil record, and perhaps even discover genetic factors that affect extinction.


Nucleic Acids Research | 2016

The UCSC Genome Browser database: 2016 update.

Matthew L. Speir; Ann S. Zweig; Kate R. Rosenbloom; Brian J. Raney; Benedict Paten; Parisa Nejad; Brian T. Lee; Katrina Learned; Donna Karolchik; Angie S. Hinrichs; Steven G. Heitner; Rachel A. Harte; Maximilian Haeussler; Luvina Guruvadoo; Pauline A. Fujita; Christopher Eisenhart; Mark Diekhans; Hiram Clawson; Jonathan Casper; Galt P. Barber; David Haussler; Robert M. Kuhn; W. James Kent

For the past 15 years, the UCSC Genome Browser (http://genome.ucsc.edu/) has served the international research community by offering an integrated platform for viewing and analyzing information from a large database of genome assemblies and their associated annotations. The UCSC Genome Browser has been under continuous development since its inception with new data sets and software features added frequently. Some release highlights of this year include new and updated genome browsers for various assemblies, including bonobo and zebrafish; new gene annotation sets; improvements to track and assembly hub support; and a new interactive tool, the “Data Integrator”, for intersecting data from multiple tracks. We have greatly expanded the data sets available on the most recent human assembly, hg38/GRCh38, to include updated gene prediction sets from GENCODE, more phenotype- and disease-associated variants from ClinVar and ClinGen, more genomic regulatory data, and a new multiple genome alignment.

Collaboration


Dive into the Brian J. Raney's collaboration.

Top Co-Authors

Avatar

David Haussler

University of California

View shared research outputs
Top Co-Authors

Avatar

Ann S. Zweig

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiram Clawson

University of California

View shared research outputs
Top Co-Authors

Avatar

W. James Kent

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Galt P. Barber

University of California

View shared research outputs
Top Co-Authors

Avatar

Robert M. Kuhn

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge