Brian K. Janes
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brian K. Janes.
Infection and Immunity | 2006
Brian K. Janes; Scott Stibitz
ABSTRACT An improved genetic tool suitable for routine markerless allelic exchange in Bacillus anthracis has been constructed. Its utility was demonstrated by the introduction of insertions, deletions, and missense mutations on the chromosome and plasmid pXO1 of the Sterne strain of B. anthracis.
Infection and Immunity | 2007
Trupti N. Brahmbhatt; Brian K. Janes; E. Scott Stibitz; Stephen C. Darnell; Patrick Sanz; Susan B. Rasmussen; Alison D. O'Brien
ABSTRACT Bacillus collagen-like protein of anthracis (BclA) is the immunodominant glycoprotein on the exosporium of Bacillus anthracis spores. Here, we sought to assess the impact of BclA on spore germination in vitro and in vivo, surface charge, and interaction with host matrix proteins. For that purpose, we constructed a markerless bclA null mutant in B. anthracis Sterne strain 34F2. The growth and sporulation rates of the ΔbclA and parent strains were nearly indistinguishable, but germination of mutant spores occurred more rapidly than that of wild-type spores in vitro and was more complete by 60 min. Additionally, the mean time to death of A/J mice inoculated subcutaneously or intranasally with mutant spores was lower than that for the wild-type spores even though the 50% lethal doses of the two strains were similar. We speculated that these in vitro and in vivo differences between mutant and wild-type spores might reflect the ease of access of germinants to their receptors in the absence of BclA. We also compared the hydrophobic and adhesive properties of ΔbclA and wild-type spores. The ΔbclA spores were markedly less water repellent than wild-type spores, and, probably as a consequence, the extracellular matrix proteins laminin and fibronectin bound significantly better to mutant than to wild-type spores. These studies suggest that BclA acts as a shield to not only reduce the ease with which spores germinate but also change the surface properties of the spore, which, in turn, may impede the interaction of the spore with host matrix substances.
Journal of Bacteriology | 2007
Jung Yeop Lee; Brian K. Janes; Karla D. Passalacqua; Brian F. Pfleger; Nicholas H. Bergman; Haichuan Liu; Kristina Håkansson; Ravindranadh V. Somu; Courtney C. Aldrich; Stephen R. Cendrowski; Philip C. Hanna; David H. Sherman
The asbABCDEF gene cluster from Bacillus anthracis is responsible for biosynthesis of petrobactin, a catecholate siderophore that functions in both iron acquisition and virulence in a murine model of anthrax. We initiated studies to determine the biosynthetic details of petrobactin assembly based on mutational analysis of the asb operon, identification of accumulated intermediates, and addition of exogenous siderophores to asb mutant strains. As a starting point, in-frame deletions of each of the genes in the asb locus (asbABCDEF) were constructed. The individual mutations resulted in complete abrogation of petrobactin biosynthesis when strains were grown on iron-depleted medium. However, in vitro analysis showed that each asb mutant grew to a very limited extent as vegetative cells in iron-depleted medium. In contrast, none of the B. anthracis asb mutant strains were able to outgrow from spores under the same culture conditions. Provision of exogenous petrobactin was able to rescue the growth defect in each asb mutant strain. Taken together, these data provide compelling evidence that AsbA performs the penultimate step in the biosynthesis of petrobactin, involving condensation of 3,4-dihydroxybenzoyl spermidine with citrate to form 3,4-dihydroxybenzoyl spermidinyl citrate. As a final step, the data reveal that AsbB catalyzes condensation of a second molecule of 3,4-dihydroxybenzoyl spermidine with 3,4-dihydroxybenzoyl spermidinyl citrate to form the mature siderophore. This work sets the stage for detailed biochemical studies with this unique acyl carrier protein-dependent, nonribosomal peptide synthetase-independent biosynthetic system.
Journal of Bacteriology | 2002
Robert B. Helling; Brian K. Janes; Heather Kimball; Timothy Tran; Michael Bundesmann; Pietra Check; Darcy Phelan; Charles A. Miller
About 10% of the nalidixic acid-resistant (Nal(r)) mutants in a transposition-induced library exhibited a growth factor requirement as the result of cysH, icdA, metE, or purB mutation. Resistance in all of these mutants required a functional AcrAB-TolC efflux pump, but the EmrAB-TolC pump played no obvious role. Transcription of acrAB was increased in each type of Nal(r) mutant. In the icdA and purB mutants, each of the known signaling pathways appeared to be used in activating the AcrAB-TolC pump. The metabolites that accumulate upstream of the blocks caused by the mutations are hypothesized to increase the levels of the AcrAB-TolC pump, thereby removing nalidixic acid from the organism.
Infection and Immunity | 2007
Nicholas H. Bergman; Erica C. Anderson; Ellen E. Swenson; Brian K. Janes; Nathan Fisher; Matthew M. Niemeyer; Amy D. Miyoshi; Philip C. Hanna
ABSTRACT The interaction between Bacillus anthracis and the mammalian phagocyte is one of the central stages in the progression of inhalational anthrax, and it is commonly believed that the host cell plays a key role in facilitating germination and dissemination of inhaled B. anthracis spores. Given this, a detailed definition of the survival strategies used by B. anthracis within the phagocyte is critical for our understanding of anthrax. In this study, we report the first genome-wide analysis of B. anthracis gene expression during infection of host phagocytes. We developed a technique for specific isolation of bacterial RNA from within infected murine macrophages, and we used custom B. anthracis microarrays to characterize the expression patterns occurring within intracellular bacteria throughout infection of the host phagocyte. We found that B. anthracis adapts very quickly to the intracellular environment, and our analyses identified metabolic pathways that appear to be important to the bacterium during intracellular growth, as well as individual genes that show significant induction in vivo. We used quantitative reverse transcription-PCR to verify that the expression trends that we observed by microarray analysis were valid, and we chose one gene (GBAA1941, encoding a putative transcriptional regulator) for further characterization. A deletion strain missing this gene showed no phenotype in vitro but was significantly attenuated in a mouse model of inhalational anthrax, suggesting that the microarray data described here provide not only the first comprehensive view of how B. anthracis survives within the host cell but also a number of promising leads for further research in anthrax.
Infection and Immunity | 2004
Sunita Shankar-Sinha; Gabriel A. Valencia; Brian K. Janes; Jessica K. Rosenberg; Chris Whitfield; Robert A. Bender; Ted J. Standiford; John G. Younger
ABSTRACT Bacterial surface carbohydrates are important pathogenic factors in gram-negative pneumonia infections. Among these factors, O antigen has been reported to protect pathogens against complement-mediated killing. To examine further the role of O antigen, we insertionally inactivated the gene encoding a galactosyltransferase necessary for serotype O1 O-antigen synthesis (wbbO) from Klebsiella pneumoniae 43816. Analysis of the mutant lipopolysaccharide by sodium dodecyl sulfate-polyacrylamide gel electrophoresis confirmed the absence of O antigen. In vitro, there were no detectable differences between wild-type K. pneumoniae and the O-antigen-deficient mutant in regard to avid binding by murine complement C3 or resistance to serum- or whole-blood-mediated killing. Nevertheless, the 72-h 50% lethal dose of the wild-type strain was 30-fold greater than that of the mutant (2 × 103 versus 6 × 104 CFU) after intratracheal injection in ICR strain mice. Despite being less lethal, the mutant organism exhibited comparable intrapulmonary proliferation at 24 h compared to the level of the wild type. Whole-lung chemokine expression (CCL3 and CXCL2) and bronchoalveolar inflammatory cell content were also similar between the two infections. However, whereas the wild-type organism produced bacteremia within 24 h of infection in every instance, bacteremia was not seen in mutant-infected mice. These results suggest that during murine pneumonia caused by K. pneumoniae, O antigen contributes to lethality by increasing the propensity for bacteremia and not by significantly changing the early course of intrapulmonary infection.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Brian F. Pfleger; Youngchang Kim; Tyler D. Nusca; Natalia Maltseva; Jung Yeop Lee; Christopher M. Rath; Jamie B. Scaglione; Brian K. Janes; Erica C. Anderson; Nicholas H. Bergman; Philip C. Hanna; Andrzej Joachimiak; David H. Sherman
Petrobactin, a virulence-associated siderophore produced by Bacillus anthracis, chelates ferric iron through the rare 3,4-isomer of dihydroxybenzoic acid (3,4-DHBA). Most catechol siderophores, including bacillibactin and enterobactin, use 2,3-DHBA as a biosynthetic subunit. Significantly, siderocalin, a factor involved in human innate immunity, sequesters ferric siderophores bearing the more typical 2,3-DHBA moiety, thereby impeding uptake of iron by the pathogenic bacterial cell. In contrast, the unusual 3,4-DHBA component of petrobactin renders the siderocalin system incapable of obstructing bacterial iron uptake. Although recent genetic and biochemical studies have revealed selected early steps in petrobactin biosynthesis, the origin of 3,4-DHBA as well as the function of the protein encoded by the final gene in the B. anthracis siderophore biosynthetic (asb) operon, asbF (BA1986), has remained unclear. In this study we demonstrate that 3,4-DHBA is produced through conversion of the common bacterial metabolite 3-dehydroshikimate (3-DHS) by AsbF—a 3-DHS dehydratase. Elucidation of the cocrystal structure of AsbF with 3,4-DHBA, in conjunction with a series of biochemical studies, supports a mechanism in which an enolate intermediate is formed through the action of this 3-DHS dehydratase metalloenzyme. Structural and functional parallels are evident between AsbF and other enzymes within the xylose isomerase TIM-barrel family. Overall, these data indicate that microbial species shown to possess homologs of AsbF may, like B. anthracis, also rely on production of the unique 3,4-DHBA metabolite to achieve full viability in the environment or virulence within the host.
PLOS ONE | 2009
Paul E. Carlson; Katherine A. Carr; Brian K. Janes; Erica C. Anderson; Philip C. Hanna
Lack of available iron is one of many environmental challenges that a bacterium encounters during infection and adaptation to iron starvation is important for the pathogen to efficiently replicate within the host. Here we define the transcriptional response of B. anthracis Sterne (34F2) to iron depleted conditions. Genome-wide transcript analysis showed that B. anthracis undergoes considerable changes in gene expression during growth in iron-depleted media, including the regulation of known and candidate virulence factors. Two genes encoding putative internalin proteins were chosen for further study. Deletion of either gene (GBAA0552 or GBAA1340) resulted in attenuation in a murine model of infection. This attenuation was amplified in a double mutant strain. These data define the transcriptional changes induced during growth in low iron conditions and illustrate the potential of this dataset in the identification of putative virulence determinants for future study.
Molecular Microbiology | 2010
Katherine A. Carr; Suzanne R. Lybarger; Erica C. Anderson; Brian K. Janes; Philip C. Hanna
Nutrient‐dependent germination of Bacillus anthracis spores is stimulated when receptors located in the inner membrane detect combinations of amino acid and purine nucleoside germinants. B. anthracis produces five distinct germinant receptors, GerH, GerK, GerL, GerS and GerX. Otherwise isogenic mutant strains expressing only one of these receptors were created and tested for germination and virulence. The GerH receptor was necessary and sufficient for wild‐type levels of germination with inosine‐containing germinants in the absence of other receptors. GerK and GerL were sufficient for germination in 50 mM L‐alanine. When mutants were inoculated intratracheally, any receptor, except for GerX, was sufficient to allow for a fully virulent infection. In contrast, when inoculated subcutaneously only the GerH receptor was able to facilitate a fully virulent infection. These results suggest that route of infection determines germinant receptor requirements. A mutant lacking all five germinant receptors was also attenuated and exhibited a severe germination defect in vitro. Together, these data give us a greater understanding of the earliest moments of germination, and provide a more detailed picture of the signals required to stimulate this process.
PLOS ONE | 2010
Katherine A. Carr; Brian K. Janes; Philip C. Hanna
Germination of Bacillus anthracis spores occurs when nutrients such as amino acids or purine nucleosides stimulate specific germinant receptors located in the spore inner membrane. The gerPABCDEF operon has been suggested to play a role in facilitating the interaction between germinants and their receptors in spores of Bacillus subtilis and Bacillus cereus. B. anthracis mutants containing deletions in each of the six genes belonging to the orthologue of the gerPABCDEF operon, or deletion of the entire operon, were tested for their ability to germinate. Deletion of the entire gerP operon resulted in a significant delay in germination in response to nutrient germinants. These spores eventually germinated to levels equivalent to wild-type, suggesting that an additional entry point for nutrient germinants may exist. Deletions of each individual gene resulted in a similar phenotype, with the exception of ΔgerPF, which showed no obvious defect. The removal of two additional gerPF-like orthologues was necessary to achieve the germination defect observed for the other mutants. Upon physical removal of the spore coat, the mutant lacking the full gerP operon no longer exhibited a germination defect, suggesting that the GerP proteins play a role in spore coat permeability. Additionally, each of the gerP mutants exhibited a severe defect in calcium-dipicolinic acid (Ca-DPA)–dependent germination, suggesting a role for the GerP proteins in this process. Collectively, these data implicate all GerP proteins in the early stages of spore germination.