Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian Leverett Lee is active.

Publication


Featured researches published by Brian Leverett Lee.


Nature | 2005

The afterglow of GRB 050709 and the nature of the short-hard gamma-ray bursts.

Derek B. Fox; Dale A. Frail; Paul A. Price; S. R. Kulkarni; Edo Berger; Tsvi Piran; Alicia M. Soderberg; S. B. Cenko; P. B. Cameron; Avishay Gal-Yam; Mansi M. Kasliwal; D.-S. Moon; Fiona A. Harrison; Ehud Nakar; Brian Paul Schmidt; Bryan E. Penprase; Roger A. Chevalier; Pawan Kumar; Kathy Roth; D. Watson; Brian Leverett Lee; Stephen A. Shectman; Mark M. Phillips; M. Roth; Patrick J. McCarthy; M Rauch; L. L. Cowie; Bruce A. Peterson; Joshua Rich; Nobuyuki Kawai

The final chapter in the long-standing mystery of the γ-ray bursts (GRBs) centres on the origin of the short-hard class of bursts, which are suspected on theoretical grounds to result from the coalescence of neutron-star or black-hole binary systems. Numerous searches for the afterglows of short-hard bursts have been made, galvanized by the revolution in our understanding of long-duration GRBs that followed the discovery in 1997 of their broadband (X-ray, optical and radio) afterglow emission. Here we present the discovery of the X-ray afterglow of a short-hard burst, GRB 050709, whose accurate position allows us to associate it unambiguously with a star-forming galaxy at redshift z = 0.160, and whose optical lightcurve definitively excludes a supernova association. Together with results from three other recent short-hard bursts, this suggests that short-hard bursts release much less energy than the long-duration GRBs. Models requiring young stellar populations, such as magnetars and collapsars, are ruled out, while coalescing degenerate binaries remain the most promising progenitor candidates.


Nature | 2005

The afterglow and elliptical host galaxy of the short gamma-ray burst GRB 050724.

Edo Berger; Paul A. Price; S. B. Cenko; Avishay Gal-Yam; Alicia M. Soderberg; Mansi M. Kasliwal; Douglas C. Leonard; P. B. Cameron; Dale A. Frail; S. R. Kulkarni; D W Murphy; Wojtek Krzeminski; Tsvi Piran; Brian Leverett Lee; K C Roth; D.-S. Moon; Derek B. Fox; Fiona A. Harrison; S. E. Persson; Brian Paul Schmidt; Bryan E. Penprase; Joshua Rich; Bruce A. Peterson; L. L. Cowie

Despite a rich phenomenology, γ-ray bursts (GRBs) are divided into two classes based on their duration and spectral hardness—the long-soft and the short-hard bursts. The discovery of afterglow emission from long GRBs was a watershed event, pinpointing their origin to star-forming galaxies, and hence the death of massive stars, and indicating an energy release of about 1051 erg. While theoretical arguments suggest that short GRBs are produced in the coalescence of binary compact objects (neutron stars or black holes), the progenitors, energetics and environments of these events remain elusive despite recent localizations. Here we report the discovery of the first radio afterglow from the short burst GRB 050724, which unambiguously associates it with an elliptical galaxy at a redshift z = 0.257. We show that the burst is powered by the same relativistic fireball mechanism as long GRBs, with the ejecta possibly collimated in jets, but that the total energy release is 10–1,000 times smaller. More importantly, the nature of the host galaxy demonstrates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors.


Science | 2013

Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone

William J. Borucki; Eric Agol; Francois Fressin; Lisa Kaltenegger; Jason F. Rowe; Howard Isaacson; Debra A. Fischer; Natalie M. Batalha; Jack J. Lissauer; Geoffrey W. Marcy; Daniel C. Fabrycky; J.-M. Desert; Stephen T. Bryson; Fabienne A. Bastien; Alan P. Boss; Erik Brugamyer; Lars A. Buchhave; Christopher J. Burke; Douglas A. Caldwell; Josh Carter; David Charbonneau; Justin R. Crepp; Jørgen Christensen-Dalsgaard; Jessie L. Christiansen; David R. Ciardi; William D. Cochran; Edna DeVore; Laurance R. Doyle; Andrea K. Dupree; Michael Endl

Two Small Habitable Planets NASAs Kepler space telescope was launched in 2009 with the goal of detecting planets the size of Earth in the habitable zone of Sun-like stars and determining the frequency of these planets. Using data from Kepler, Borucki et al. (p. 587, published online 18 April) report the detection of a five-planet system where all the planets are smaller than twice the size of Earth and where the two outermost planets orbit in the habitable zone of their star, defined as the region where a rocky planet can host liquid water on its solid surface. The star, Kepler-62, is smaller and cooler than the Sun. The Kepler mission detected a five-planet system with two small planets in the habitable zone of a star lighter than the Sun. We present the detection of five planets—Kepler-62b, c, d, e, and f—of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super–Earth-size (1.25 R⊕ < planet radius ≤ 2.0 R⊕) planets in the habitable zone of their host star, respectively receiving 1.2 ± 0.2 times and 0.41 ± 0.05 times the solar flux at Earth’s orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk.


The Astrophysical Journal | 2006

SN 2005bf: a possible transition event between type Ib/c supernovae and gamma-ray bursts

Gaston Folatelli; Carlos Contreras; Mark M. Phillips; S. E. Woosley; Sergei I. Blinnikov; Nidia I. Morrell; Nicholas B. Suntzeff; Brian Leverett Lee; Mario Hamuy; Sergio Gonzalez; Wojtek Krzeminski; M. Roth; Weidong Li; Alexei V. Filippenko; Ryan J. Foley; Wendy L. Freedman; Barry F. Madore; S. E. Persson; David C. Murphy; S. Boissier; Gaspar Galaz; Luis González; Patrick J. McCarthy; Andrew McWilliam; W. Pych

We present ugriBV photometry and optical spectroscopy of the Type Ib/Ic SN 2005bf covering the first �100 days following discovery. The ugBV light curves displayed an unprecedented morphology among Type Ib/Ic supernovae, with an initial maximum some 2 weeks after discovery, and a second, main maximum about 25 days after that. The bolometric light curve indicates that SN 2005bf was a remarkably luminous event, radiating at least 6.3×10 42 erg s −1 at maximum light, and a total of 2.1 × 10 49 erg during the first 75 days after the explosion. Spectroscopically, SN 2005bf underwent a unique transformation


The Astrophysical Journal | 2011

MARVELS-1b: A Short-period, Brown Dwarf Desert Candidate from the SDSS-III Marvels Planet Search

Brian Leverett Lee; Jian Ge; Scott W. Fleming; Keivan G. Stassun; B. Scott Gaudi; Rory Barnes; Suvrath Mahadevan; Jason D. Eastman; Jason T. Wright; Robert Siverd; Bruce Gary; Luan Ghezzi; Chris Laws; John P. Wisniewski; G. F. Porto de Mello; R. Ogando; Marcio A. G. Maia; Luiz Nicolaci da Costa; Thirupathi Sivarani; Joshua Pepper; Duy Cuong Nguyen; L. Hebb; Nathan De Lee; Ji Wang; Xiaoke Wan; Bo Zhao; Liang Chang; John S. de Groot; Frank Varosi; Fred Hearty

We present a new short-period brown dwarf (BD) candidate around the star TYC 1240-00945-1. This candidate was discovered in the first year of the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the Sloan Digital Sky Survey (SDSS) III, and we designate the BD as MARVELS-1b. MARVELS uses the technique of dispersed fixed-delay interferometery to simultaneously obtain radial velocity (RV) measurements for 60 objects per field using a single, custom-built instrument that is fiber fed from the SDSS 2.5 m telescope. From our 20 RV measurements spread over a ~370 day time baseline, we derive a Keplerian orbital fit with semi-amplitude K = 2.533 ± 0.025 km s^(–1), period P = 5.8953 ± 0.0004 days, and eccentricity consistent with circular. Independent follow-up RV data confirm the orbit. Adopting a mass of 1.37 ± 0.11 M_☉ for the slightly evolved F9 host star, we infer that the companion has a minimum mass of 28.0 ± 1.5 M_(Jup), a semimajor axis 0.071 ± 0.002 AU assuming an edge-on orbit, and is probably tidally synchronized. We find no evidence for coherent intrinsic variability of the host star at the period of the companion at levels greater than a few millimagnitudes. The companion has an a priori transit probability of ~14%. Although we find no evidence for transits, we cannot definitively rule them out for companion radii ≲ R_(Jup).


Monthly Notices of the Royal Astronomical Society | 2010

Characterizing transiting extrasolar planets with narrow-band photometry and GTC/OSIRIS

Knicole D. Colón; Eric B. Ford; Brian Leverett Lee; Suvrath Mahadevan; Cullen H. Blake

We report the first extrasolar planet observations from the 10.4-m Gran Telescopio Canarias (GTC), currently the worlds largest, fully steerable, single-aperture optical telescope. We used the Optical System for Imaging and low Resolution Integrated Spectroscopy (OSIRIS) tunable filter imager on the GTC to acquire high-precision, narrow-band photometry of the transits of the giant exoplanets, TrES-2b and TrES-3b. We obtained near-simultaneous observations in two near-infrared wavebands (790.2 and 794.4 ± 2.0 nm) specifically chosen to avoid water vapour absorption and skyglow so as to minimize the atmospheric effects that often limit the precision of ground-based photometry. Our results demonstrate a very-high photometric precision with minimal atmospheric contamination despite relatively poor atmospheric conditions and some technical problems with the telescope. We find the photometric precision for the TrES-2 observations to be 0.343 and 0.412 mmag for the 790.2- and 794.4-nm light curves, and the precision of the TrES-3 observations was found to be 0.470 and 0.424 mmag for the 790.2- and 794.4-nm light curves, respectively. We also discuss how future follow-up observations of transiting planets with this novel technique can contribute to the characterization of Neptune- and super-Earth-size planets to be discovered by space-based missions like CoRoT and Kepler, as well as measure atmospheric properties of giant planets, such as the strength of atmospheric absorption features.


Publications of the Astronomical Society of the Pacific | 2005

Searching for Planetary Transits in Galactic Open Clusters: EXPLORE/OC

Kaspar von Braun; Brian Leverett Lee; Sara Seager; H. K. C. Yee; Gabriela Mallen-Ornelas; Michael D. Gladders

Open clusters potentially provide an ideal environment for the search for transiting extrasolar planets, since they feature a relatively large number of stars of the same known age and metallicity at the same distance. With this motivation, over a dozen open clusters are now being monitored by four different groups. We review the motivations and challenges for open cluster transit surveys for short-period giant planets. Our photometric monitoring survey of Galactic southern open clusters, the Extrasolar Planet Occultation Research/ Open Clusters (EXPLORE/OC) project, was designed with the goals of maximizing the chance of finding and characterizing planets and of providing a statistically valuable astrophysical result in the case of no detections. We use the EXPLORE/OC data from two open clusters, NGC 2660 and NGC 6208, to illustrate some of the largely unrecognized issues facing open cluster surveys, including severe contamination by Galactic field stars (180%) and the relatively low number of cluster members for which high-precision photometry can be obtained. We discuss how a careful selection of open cluster targets under a wide range of criteria such as cluster richness, observability, distance, and age can meet the challenges, maximizing chances to detect planet transits. In addition, we present the EXPLORE/OC observing strategy to optimize planet detection, which includes high-cadence observing and continuously observing individual clusters rather than alternating between targets.


The Astronomical Journal | 2012

VERY LOW-MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS I: A LOW MASS RATIO STELLAR COMPANION TO TYC 4110-01037-1 IN A 79-DAY ORBIT

John P. Wisniewski; Jian Ge; Justin R. Crepp; Nathan De Lee; Jason D. Eastman; Massimiliano Esposito; Scott W. Fleming; B. Scott Gaudi; Luan Ghezzi; Jonay I. González Hernández; Brian Leverett Lee; Keivan G. Stassun; Eric Agol; Carlos Allende Prieto; Rory Barnes; Dmitry Bizyaev; Phillip A. Cargile; Liang Chang; Luiz Nicolaci da Costa; G. F. Porto de Mello; Bruno Femenía; Letícia D. Ferreira; Bruce Gary; L. Hebb; Jon A. Holtzman; Jian Liu; Bo Ma; Claude E. Mack; Suvrath Mahadevan; Marcio A. G. Maia

TYC 4110-01037-1 has a low-mass stellar companion, whose small mass ratio and short orbital period are atypical among binary systems with solar-like (T eff 6000 K) primary stars. Our analysis of TYC 4110-01037-1 reveals it to be a moderately aged (5?Gyr) solar-like star having a mass of 1.07 ? 0.08 M ? and radius of 0.99 ? 0.18 R ?. We analyze 32 radial velocity (RV) measurements from the SDSS-III MARVELS survey as well as 6 supporting RV measurements from the SARG spectrograph on the 3.6 m Telescopio Nazionale Galileo telescope obtained over a period of ~2?years. The best Keplerian orbital fit parameters were found to have a period of 78.994 ? 0.012 days, an eccentricity of 0.1095 ? 0.0023, and a semi-amplitude of 4199 ? 11?m?s?1. We determine the minimum companion mass (if sin i = 1) to be 97.7 ? 5.8 M Jup. The systems companion to host star mass ratio, ?0.087 ? 0.003, places it at the lowest end of observed values for short period stellar companions to solar-like (T eff 6000 K) stars. One possible way to create such a system would be if a triple-component stellar multiple broke up into a short period, low q binary during the cluster dispersal phase of its lifetime. A candidate tertiary body has been identified in the system via single-epoch, high contrast imagery. If this object is confirmed to be comoving, we estimate it would be a dM4 star. We present these results in the context of our larger-scale effort to constrain the statistics of low-mass stellar and brown dwarf companions to FGK-type stars via the MARVELS survey.


The Astronomical Journal | 2012

VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. II. A SHORT-PERIOD COMPANION ORBITING AN F STAR WITH EVIDENCE OF A STELLAR TERTIARY AND SIGNIFICANT MUTUAL INCLINATION

Scott W. Fleming; Jian Ge; Rory Barnes; Thomas G. Beatty; Justin R. Crepp; Nathan De Lee; Massimiliano Esposito; Bruno Femenía; Letícia D. Ferreira; Bruce Gary; B. Scott Gaudi; Luan Ghezzi; Jonay I. González Hernández; L. Hebb; Peng Jiang; Brian Leverett Lee; Ben Nelson; Gustavo F. Porto de Mello; Benjamin J. Shappee; Keivan G. Stassun; Todd A. Thompson; Benjamin M. Tofflemire; John P. Wisniewski; W. Michael Wood-Vasey; Eric Agol; Carlos Allende Prieto; Dmitry Bizyaev; Howard J. Brewington; Phillip A. Cargile; Louis Coban

We report the discovery via radial velocity (RV) measurements of a short-period (P = 2.430420 ± 0.000006 days) companion to the F-type main-sequence star TYC 2930-00872-1. A long-term trend in the RV data also suggests the presence of a tertiary stellar companion with P > 2000 days. High-resolution spectroscopy of the host star yields T_(eff) = 6427 ± 33 K, log g = 4.52 ± 0.14, and [Fe/H] = –0.04 ± 0.05. These parameters, combined with the broadband spectral energy distribution (SED) and a parallax, allow us to infer a mass and radius of the host star of M_1 = 1.21 ± 0.08 M_☉ and R_1 = 1.09^(+0.15)_(–0.13) R_☉. The minimum mass of the inner companion is below the hydrogen-burning limit; however, the true mass is likely to be substantially higher. We are able to exclude transits of the inner companion with high confidence. Further, the host star spectrum exhibits a clear signature of Ca H and K core emission, indicating stellar activity, but a lack of photometric variability and small v sin I suggest that the primarys spin axis is oriented in a pole-on configuration. The rotational period of the primary estimated through an activity-rotation relation matches the orbital period of the inner companion to within 1.5 σ, suggesting that the primary and inner companion are tidally locked. If the inner companions orbital angular momentum vector is aligned with the stellar spin axis as expected through tidal evolution, then it has a stellar mass of ~0.3-0.4 M_☉. Direct imaging limits the existence of stellar companions to projected separations <30 AU. No set of spectral lines and no significant flux contribution to the SED from either companion are detected, which places individual upper mass limits of M_([2,3]) ≾ 1.0 M_☉, provided they are not stellar remnants. If the tertiary is not a stellar remnant, then it likely has a mass of ~0.5-0.6 M_☉, and its orbit is likely significantly inclined from that of the secondary, suggesting that the Kozai-Lidov mechanism may have driven the dynamical evolution of this system.


Proceedings of SPIE | 2009

A new generation multi-object Doppler instrument for the SDSS-III Multi-object APO Radial Velocity Exoplanet Large-area Survey

Jian Ge; Brian Leverett Lee; Nathan De Lee; Xiaoke Wan; John S. de Groot; Bo Zhao; Frank Varosi; Kevin T. Hanna; Suvrath Mahadevan; Fred Hearty; Liang Chang; Jian Liu; Julian Christopher van Eyken; Ji Wang; Rohan Pais; Zhiping Chen; Alaina Shelden; Erin Costello

We report performance of a new generation multi-object Doppler instrument for the on-going Multi-object APO Radial-velocity Exoplanet Large-area Survey (MARVELS) of the Sloan Digital Sky Survey III (SDSS-III) program. This instrument is based on dispersed fixed-delay interferomtry design. It consists of a multi-object fiber-feed, a thermally compensated monolithic fixed-delay interferometer, a high throughput spectrograph and a 4kx4k CCD camera. The spectrograph resolving power is R=11,000 and the wavelength coverage is 500-570 nm. The instrument is capable of measuring 60 stars in a single exposure for high to moderate precision radial velocity (3-20 m/s) measurements depending on the star magnitudes (V=7.6-12). The instrument was commissioned at the SDSS telescope in September 2008 and used to collect science data starting in October 2008. Observations of reference stars show that the measured photon noise limiting errors are consistent with the prediction for most of the measurements.

Collaboration


Dive into the Brian Leverett Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Ge

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Jian Li Ge

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Sankaran Mahadevan

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Scott W. Fleming

Computer Sciences Corporation

View shared research outputs
Top Co-Authors

Avatar

Julian Christopher van Eyken

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Agol

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge