Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott W. Fleming is active.

Publication


Featured researches published by Scott W. Fleming.


The Astrophysical Journal | 2006

The First Extrasolar Planet Discovered with a New-Generation High-Throughput Doppler Instrument

Jian Ge; Julian Christopher van Eyken; Suvrath Mahadevan; Curtis N. DeWitt; Stephen R. Kane; Roger E. Cohen; Andrew Vanden Heuvel; Scott W. Fleming; Pengcheng Guo; Gregory W. Henry; Donald P. Schneider; Lawrence W. Ramsey; Robert A. Wittenmyer; Michael Endl; William D. Cochran; Eric B. Ford; E. L. Martín; G. Israelian; Jeff A. Valenti; D. Montes

We report the detection of the first extrasolar planet, ET-1 (HD 102195b), using the Exoplanet Tracker (ET), a new-generation Doppler instrument. The planet orbits HD 102195, a young star with solar metallicity that may be part of the local association. The planet imparts radial velocity variability to the star with a semiamplitude of 63.4 ± 2.0 m s-1 and a period of 4.11 days. The planetary minimum mass (m sin i) is 0.488MJ ± 0.015MJ. The planet was initially detected in the spring of 2005 with the Kitt Peak National Observatory (KPNO) 0.9 m coude feed telescope. The detection was confirmed by radial velocity observations with the ET at the KPNO 2.1 m telescope and also at the 9 m Hobby-Eberly Telescope (HET) with its High Resolution Spectrograph. This planetary discovery with a 0.9 m telescope around a V = 8.05 magnitude star was made possible by the high throughput of the instrument: 49% measured from the fiber output to the detector. The ETs interferometer-based approach is an effective method for planet detection. In addition, the ET concept is adaptable to multiple-object Doppler observations or very high precision observations with a cross-dispersed echelle spectrograph to separate stellar fringes over a broad wavelength band. In addition to spectroscopic observations of HD 102195, we obtained brightness measurements with one of the automated photometric telescopes at Fairborn Observatory. Those observations reveal that HD 102195 is a spotted variable star with an amplitude of ~0.015 mag and a 12.3 ± 0.3 day period. This is consistent with spectroscopically observed Ca II H and K emission levels and line-broadening measurements but inconsistent with rotational modulation of surface activity as the cause of the radial velocity variability. Our photometric observations rule out transits of the planetary companion.


The Astronomical Journal | 2015

THE DATA REDUCTION PIPELINE for the APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT

David L. Nidever; Jon A. Holtzman; Carlos Allende Prieto; Stephane Beland; Chad F. Bender; Dmitry Bizyaev; Adam Burton; Rohit Desphande; Scott W. Fleming; Ana G. Pérez; Frederick R. Hearty; Steven R. Majewski; Szabolcs Mészáros; Demitri Muna; Duy Cuong Nguyen; Ricardo P. Schiavon; Matthew Shetrone; Michael F. Skrutskie; Jennifer Sobeck; John C. Wilson

The Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the Sloan Digital Sky Survey III, explores the stellar populations of the Milky Way using the Sloan 2.5-m telescope linked to a high resolution (R~22,500), near-infrared (1.51-1.70 microns) spectrograph with 300 optical fibers. For over 150,000 predominantly red giant branch stars that APOGEE targeted across the Galactic bulge, disks and halo, the collected high S/N (>100 per half-resolution element) spectra provide accurate (~0.1 km/s) radial velocities, stellar atmospheric parameters, and precise (~0.1 dex) chemical abundances for about 15 chemical species. Here we describe the basic APOGEE data reduction software that reduces multiple 3D raw data cubes into calibrated, well-sampled, combined 1D spectra, as implemented for the SDSS-III/APOGEE data releases (DR10, DR11 and DR12). The processing of the near-IR spectral data of APOGEE presents some challenges for reduction, including automated sky subtraction and telluric correction over a 3 degree diameter field and the combination of spectrally dithered spectra. We also discuss areas for future improvement.


The Astronomical Journal | 2017

The Apache Point Observatory Galactic Evolution Experiment (APOGEE)

Steven R. Majewski; Ricardo P. Schiavon; Peter M. Frinchaboy; Carlos Allende Prieto; Robert H. Barkhouser; Dmitry Bizyaev; Basil Blank; Sophia Brunner; Adam Burton; R. Carrera; S. Drew Chojnowski; Katia Cunha; Courtney R. Epstein; Greg Fitzgerald; Ana G. Pérez; Frederick R. Hearty; C. Henderson; Jon A. Holtzman; Jennifer A. Johnson; Charles R. Lam; James E. Lawler; Paul Maseman; Szabolcs Mészáros; Matthew J. Nelson; Duy Coung Nguyen; David L. Nidever; Marc H. Pinsonneault; Matthew Shetrone; Stephen A. Smee; Verne V. Smith

National Science Foundation [AST-1109178, AST-1616636]; Gemini Observatory; Spanish Ministry of Economy and Competitiveness [AYA-2011-27754]; NASA [NNX12AE17G]; Hungarian Academy of Sciences; Hungarian NKFI of the Hungarian National Research, Development and Innovation Office [K-119517]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science


The Astrophysical Journal | 2011

MARVELS-1b: A Short-period, Brown Dwarf Desert Candidate from the SDSS-III Marvels Planet Search

Brian Leverett Lee; Jian Ge; Scott W. Fleming; Keivan G. Stassun; B. Scott Gaudi; Rory Barnes; Suvrath Mahadevan; Jason D. Eastman; Jason T. Wright; Robert Siverd; Bruce Gary; Luan Ghezzi; Chris Laws; John P. Wisniewski; G. F. Porto de Mello; R. Ogando; Marcio A. G. Maia; Luiz Nicolaci da Costa; Thirupathi Sivarani; Joshua Pepper; Duy Cuong Nguyen; L. Hebb; Nathan De Lee; Ji Wang; Xiaoke Wan; Bo Zhao; Liang Chang; John S. de Groot; Frank Varosi; Fred Hearty

We present a new short-period brown dwarf (BD) candidate around the star TYC 1240-00945-1. This candidate was discovered in the first year of the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the Sloan Digital Sky Survey (SDSS) III, and we designate the BD as MARVELS-1b. MARVELS uses the technique of dispersed fixed-delay interferometery to simultaneously obtain radial velocity (RV) measurements for 60 objects per field using a single, custom-built instrument that is fiber fed from the SDSS 2.5 m telescope. From our 20 RV measurements spread over a ~370 day time baseline, we derive a Keplerian orbital fit with semi-amplitude K = 2.533 ± 0.025 km s^(–1), period P = 5.8953 ± 0.0004 days, and eccentricity consistent with circular. Independent follow-up RV data confirm the orbit. Adopting a mass of 1.37 ± 0.11 M_☉ for the slightly evolved F9 host star, we infer that the companion has a minimum mass of 28.0 ± 1.5 M_(Jup), a semimajor axis 0.071 ± 0.002 AU assuming an edge-on orbit, and is probably tidally synchronized. We find no evidence for coherent intrinsic variability of the host star at the period of the companion at levels greater than a few millimagnitudes. The companion has an a priori transit probability of ~14%. Although we find no evidence for transits, we cannot definitively rule them out for companion radii ≲ R_(Jup).


The Astrophysical Journal | 2010

DISCOVERY OF A LOW-MASS COMPANION TO A METAL-RICH F STAR WITH THE MARVELS PILOT PROJECT

Scott W. Fleming; Jian Ge; Suvrath Mahadevan; Brian Leverett Lee; Jason D. Eastman; Robert Siverd; B. Scott Gaudi; Andrzej Niedzielski; Thirupathi Sivarani; Keivan G. Stassun; Alex Wolszczan; Rory Barnes; Bruce Gary; Duy Cuong Nguyen; Robert C. Morehead; Xiaoke Wan; Bo Zhao; Jian Liu; Pengcheng Guo; Stephen R. Kane; Julian Christopher van Eyken; Nathan De Lee; Justin R. Crepp; Alaina Shelden; Chris Laws; John P. Wisniewski; Donald P. Schneider; Joshua Pepper; Stephanie A. Snedden; Kaike Pan

We report the discovery of a low-mass companion orbiting the metal-rich, main sequence F star TYC 2949-00557-1 during the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) pilot project. The host star has an effective temperature T_(eff) = 6135 ± 40 K, logg = 4.4 ± 0.1, and [Fe/H] = 0.32 ± 0.01, indicating a mass of M_⊙ = 1.25 ± 0.09 M_⊙ and R = 1.15 ± 0.15 R_⊙. The companion has an orbital period of 5.69449 ± 0.00023 days and straddles the hydrogen burning limit with a minimum mass of 64 M_J , and thus may be an example of the rare class of brown dwarfs orbiting at distances comparable to those of Hot Jupiters. We present relative photometry that demonstrates that the host star is photometrically stable at the few millimagnitude level on time scales of hours to years, and rules out transits for a companion of radius ≳ 0.8 R_J at the 95% confidence level. Tidal analysis of the system suggests that the star and companion are likely in a double synchronous state where both rotational and orbital synchronization have been achieved. This is the first low-mass companion detected with a multi-object, dispersed, fixed-delay interferometer.


The Astrophysical Journal | 2015

THE PUZZLING Li-RICH RED GIANT ASSOCIATED WITH NGC 6819

Joleen K. Carlberg; Verne V. Smith; Katia Cunha; Steven R. Majewski; Szabolcs Mészáros; Matthew Shetrone; Carlos Allende Prieto; Dmitry Bizyaev; Keivan G. Stassun; Scott W. Fleming; Gail Zasowski; Frederick R. Hearty; David L. Nidever; Donald P. Schneider; Jon A. Holtzman; Peter M. Frinchaboy

A Li-rich red giant star (2M19411367+4003382) recently discovered in the direction of NGC 6819 belongs to the rare subset of Li-rich stars that have not yet evolved to the luminosity bump, an evolutionary stage where models predict Li can be replenished. The currently favored model to explain Li enhancement in first-ascent red giants like 2M19411367+4003382 requires deep mixing into the stellar interior. Testing this model requires a measurement of 12C/13C, which is possible to obtain from APOGEE spectra. However, the Li-rich star also has abnormal asteroseismic properties that call into question its membership in the cluster, even though its radial velocity and location on color-magnitude diagrams are consistent with membership. To address these puzzles, we have measured a wide array of abundances in the Li-rich star and three comparison stars using spectra taken as part of the APOGEE survey to determine the degree of stellar mixing, address the question of membership, and measure the surface gravity. We confirm that the Li-rich star is a red giant with the same overall chemistry as the other cluster giants. However, its log g is significantly lower, consistent with the asteroseismology results and suggestive of a very low mass if the star is indeed a cluster member. Regardless of the cluster membership, the 12C/13C and C/N ratios of the Li-rich star are consistent with standard first dredge-up, indicating that Li dilution has already occurred, and inconsistent with internal Li enrichment scenarios that require deep mixing.


The Astronomical Journal | 2016

COMPANIONS to APOGEE STARS. I. A MILKY WAY-SPANNING CATALOG of STELLAR and SUBSTELLAR COMPANION CANDIDATES and THEIR DIVERSE HOSTS

Nicholas W. Troup; David L. Nidever; Nathan De Lee; Joleen K. Carlberg; Steven R. Majewski; Martin Fernandez; Kevin R. Covey; S. Drew Chojnowski; Joshua Pepper; Duy T. Nguyen; Keivan G. Stassun; Duy Cuong Nguyen; John P. Wisniewski; Scott W. Fleming; Dmitry Bizyaev; Peter M. Frinchaboy; D. A. García-Hernández; Jian Ge; Frederick R. Hearty; Szabolcs Mészáros; Kaike Pan; Carlos Allende Prieto; Donald P. Schneider; Matthew Shetrone; Michael F. Skrutskie; John C. Wilson; Olga Zamora

In its three years of operation, the Sloan Digital Sky Survey (SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE-1) observed


The Astrophysical Journal | 2010

GROUND-BASED MULTISITE OBSERVATIONS OF TWO TRANSITS OF HD 80606b

Avi Shporer; Joshua N. Winn; S. Dreizler; Knicole D. Colón; William Michael Wood-Vasey; Philip Ilho Choi; Caroline V. Morley; Claire Moutou; William F. Welsh; Don Pollaco; D. Starkey; Elisabeth R. Adams; S. C. C. Barros; F. Bouchy; A. Cabrera-Lavers; S. Cerutti; L. Coban; K. Costello; H. J. Deeg; Rodrigo F. Díaz; Gilbert A. Esquerdo; J. M. Fernandez; Scott W. Fleming; Eric B. Ford; Benjamin J. Fulton; M. Good; G. Hébrard; Matthew J. Holman; M. Hunt; Shimonee Kadakia

>


The Astrophysical Journal | 2010

SPITZER AND NEAR-INFRARED OBSERVATIONS OF A NEW BIPOLAR PROTOSTELLAR OUTFLOW IN THE ROSETTE MOLECULAR CLOUD

Jason E. Ybarra; Elizabeth A. Lada; Zoltan Balog; Scott W. Fleming; Randy L. Phelps

14,000 stars with enough epochs over a sufficient temporal baseline for the fitting of Keplerian orbits. We present the custom orbit-fitting pipeline used to create this catalog, which includes novel quality metrics that account for the phase and velocity coverage of a fitted Keplerian orbit. With a typical RV precision of


The Astrophysical Journal | 2008

MEASURING STELLAR RADIAL VELOCITIES WITH A DISPERSED FIXED-DELAY INTERFEROMETER

Suvrath Mahadevan; Julian Christopher van Eyken; Jian Ge; Curtis N. DeWitt; Scott W. Fleming; Roger E. Cohen; Justin R. Crepp; Andrew Vanden Heuvel

sim100-200

Collaboration


Dive into the Scott W. Fleming's collaboration.

Top Co-Authors

Avatar

Jian Ge

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Julian Christopher van Eyken

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Li Ge

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge