Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian M. Olson is active.

Publication


Featured researches published by Brian M. Olson.


Journal of Immunotherapy | 2010

DNA Vaccine Encoding Prostatic Acid Phosphatase (PAP) Elicits Long-term T-cell Responses in Patients With Recurrent Prostate Cancer

Jordan T. Becker; Brian M. Olson; Laura E. Johnson; James G. Davies; Edward J. Dunphy; Douglas G. McNeel

Prostatic acid phosphatase (PAP) is a tumor antigen in prostate cancer and the target of several anti-tumor vaccines in earlier clinical trials. Ultimately, the goal of anti-tumor vaccines is to elicit a sustainable immune response, able to eradicate a tumor, or at least restrain its growth. We have investigated plasmid DNA vaccines and have previously conducted a phase 1 trial in which patients with recurrent prostate cancer were vaccinated with a DNA vaccine encoding PAP. In this study, we investigated the immunologic efficacy of subsequent booster immunizations, and conducted more detailed longitudinal immune analysis, to answer several questions aimed at guiding optimal schedules of vaccine administration for future clinical trials. We report that antigen-specific cytolytic T-cell responses were amplified after immunization in 7 of 12 human leukocyte antigen-A2-expressing individuals, and that multiple immunizations seemed necessary to elicit PAP-specific interferon-γ-secreting immune responses detectable by enzyme-linked immunosorbent spot assay. Moreover, among individuals who experienced a ≥200% increase in prostate-specific antigen doubling time, long-term PAP-specific interferon-γ-secreting T-cell responses were detectable in 6 of 8, but in only 1 of 14 individuals without an observed change in prostate-specific antigen doubling time (P=0.001). Finally, we identified that immune responses elicited could be further amplified by subsequent booster immunizations. These results suggest that future trials using this DNA vaccine, and potentially other anti-tumor DNA vaccines, could investigate ongoing schedules of administration with periodic booster immunizations. Moreover, these results suggest that DNA vaccines targeting PAP could potentially be combined in heterologous immunization strategies with other vaccines to further augment PAP-specific T-cell immunity.


Frontiers in Immunology | 2013

Interleukin 35: A Key Mediator of Suppression and the Propagation of Infectious Tolerance

Brian M. Olson; Jeremy A. Sullivan; William J. Burlingham

The importance of regulatory T cells (Tregs) in balancing the effector arm of the immune system is well documented, playing a central role in preventing autoimmunity, facilitating graft tolerance following organ transplantation, and having a detrimental impact on the development of anti-tumor immunity. These regulatory responses use a variety of mechanisms to mediate suppression, including soluble factors. While IL-10 and TGF-β are the most commonly studied immunosuppressive cytokines, the recently identified IL-35 has been shown to have potent suppressive function in vitro and in vivo. Furthermore, not only does IL-35 have the ability to directly suppress effector T cell responses, it is also able to expand regulatory responses by propagating infectious tolerance and generating a potent population of IL-35-expressing inducible Tregs. In this review, we summarize research characterizing the structure and function of IL-35, examine its role in disease, and discuss how it can contribute to the induction of a distinct population of inducible Tregs.


Journal of Immunology | 2012

Human Prostate Tumor Antigen–Specific CD8+ Regulatory T Cells Are Inhibited by CTLA-4 or IL-35 Blockade

Brian M. Olson; Ewa Jankowska-Gan; Jordan T. Becker; Dario A. A. Vignali; William J. Burlingham; Douglas G. McNeel

Regulatory T cells play important roles in cancer development and progression by limiting the generation of innate and adaptive anti-tumor immunity. We hypothesized that in addition to natural CD4+CD25+ regulatory T cells (Tregs) and myeloid-derived suppressor cells, tumor Ag–specific Tregs interfere with the detection of anti-tumor immunity after immunotherapy. Using samples from prostate cancer patients immunized with a DNA vaccine encoding prostatic acid phosphatase (PAP) and a trans-vivo delayed-type hypersensitivity (tvDTH) assay, we found that the detection of PAP-specific effector responses after immunization was prevented by the activity of PAP-specific regulatory cells. These regulatory cells were CD8+CTLA-4+, and their suppression was relieved by blockade of CTLA-4, but not IL-10 or TGF-β. Moreover, Ag-specific CD8+ Tregs were detected prior to immunization in the absence of PAP-specific effector responses. These PAP-specific CD8+CTLA-4+ suppressor T cells expressed IL-35, which was decreased after blockade of CTLA-4, and inhibition of either CTLA-4 or IL-35 reversed PAP-specific suppression of tvDTH response. PAP-specific CD8+CTLA-4+ T cells also suppressed T cell proliferation in an IL-35–dependent, contact-independent fashion. Taken together, these findings suggest a novel population of CD8+CTLA-4+ IL-35–secreting tumor Ag–specific Tregs arise spontaneously in some prostate cancer patients, persist during immunization, and can prevent the detection of Ag-specific effector responses by an IL-35–dependent mechanism.


Cancer Immunology, Immunotherapy | 2010

HLA-A2-restricted T-cell epitopes specific for prostatic acid phosphatase

Brian M. Olson; Thomas Frye; Laura E. Johnson; Lawrence Fong; Keith L. Knutson; Mary L. Disis; Douglas G. McNeel

Prostatic acid phosphatase (PAP) has been investigated as the target of several antigen-specific anti-prostate tumor vaccines. The goal of antigen-specific active immunotherapies targeting PAP would ideally be to elicit PAP-specific CD8+ effector T cells. The identification of PAP-specific CD8+ T-cell epitopes should provide a means of monitoring the immunological efficacy of vaccines targeting PAP, and these epitopes might themselves be developed as vaccine antigens. In the current report, we hypothesized that PAP-specific epitopes might be identified by direct identification of pre-existing CD8+ T cells specific for HLA-A2-restricted peptides derived from PAP in the blood of HLA-A2-expressing individuals. 11 nonamer peptides derived from the amino acid sequence of PAP were used as stimulator antigens in functional ELISPOT assays with peripheral blood mononuclear cells from 20 HLA-A2+ patients with prostate cancer or ten healthy blood donors. Peptide-specific T cells were frequently identified in both groups for three of the peptides, p18–26, p112–120, and p135–143. CD8+ T-cell clones specific for three peptides, p18–26, p112–120, and p299–307, confirmed that these are HLA-A2-restricted T-cell epitopes. Moreover, HLA-A2 transgenic mice immunized with a DNA vaccine encoding PAP developed epitope-specific responses for one or more of these three peptide epitopes. We propose that this method to first identify epitopes for which there are pre-existing epitope-specific T cells could be used to prioritize MHC class I-specific epitopes for other antigens. In addition, we propose that the epitopes identified here could be used to monitor immune responses in HLA-A2+ patients receiving vaccines targeting PAP to identify potentially therapeutic immune responses.


Cancer immunology research | 2015

PD-1 or PD-L1 Blockade Restores Antitumor Efficacy Following SSX2 Epitope–Modified DNA Vaccine Immunization

Brian T. Rekoske; Heath A. Smith; Brian M. Olson; Brett B. Maricque; Douglas G. McNeel

Rekoske and colleagues show that an SSX2 DNA vaccine, optimized for MHC class I binding epitopes, led to increased PD-1 expression on antigen-specific CD8+ T cells and inferior antitumor response in mice bearing tumors expressing SSX2, which was reversed when combined with PD-1/PD-L1 blockade. DNA vaccines have demonstrated antitumor efficacy in multiple preclinical models, but low immunogenicity has been observed in several human clinical trials. This has led to many approaches seeking to improve the immunogenicity of DNA vaccines. We previously reported that a DNA vaccine encoding the cancer–testis antigen SSX2, modified to encode altered epitopes with increased MHC class I affinity, elicited a greater frequency of cytolytic, multifunctional CD8+ T cells in non–tumor-bearing mice. We sought to test whether this optimized vaccine resulted in increased antitumor activity in mice bearing an HLA-A2–expressing tumor engineered to express SSX2. We found that immunization of tumor-bearing mice with the optimized vaccine elicited a surprisingly inferior antitumor effect relative to the native vaccine. Both native and optimized vaccines led to increased expression of PD-L1 on tumor cells, but antigen-specific CD8+ T cells from mice immunized with the optimized construct expressed higher PD-1. Splenocytes from immunized animals induced PD-L1 expression on tumor cells in vitro. Antitumor activity of the optimized vaccine could be increased when combined with antibodies blocking PD-1 or PD-L1, or by targeting a tumor line not expressing PD-L1. These findings suggest that vaccines aimed at eliciting effector CD8+ T cells, and DNA vaccines in particular, might best be combined with PD-1 pathway inhibitors in clinical trials. This strategy may be particularly advantageous for vaccines targeting prostate cancer, a disease for which antitumor vaccines have demonstrated clinical benefit and yet PD-1 pathway inhibitors alone have shown little efficacy to date. Cancer Immunol Res; 3(8); 946–55. ©2015 AACR.


Clinical Cancer Research | 2014

Real-time immune monitoring to guide plasmid DNA vaccination schedule targeting prostatic acid phosphatase in patients with castration-resistant prostate cancer

Douglas G. McNeel; Jordan T. Becker; Jens C. Eickhoff; Laura E. Johnson; Eric S. Bradley; Isabel F. Pohlkamp; Mary Jane Staab; Glenn Liu; George Wilding; Brian M. Olson

Purpose: We have previously reported that a DNA vaccine encoding prostatic acid phosphatase (PAP) could elicit PAP-specific T cells in patients with early recurrent prostate cancer. In the current pilot trial, we sought to evaluate whether prolonged immunization with regular booster immunizations, or “personalized” schedules of immunization determined using real-time immune monitoring, could elicit persistent, antigen-specific T cells, and whether treatment was associated with changes in PSA doubling time (PSA DT). Experimental Design: Sixteen patients with castration-resistant, nonmetastatic prostate cancer received six immunizations at 2-week intervals and then either quarterly (arm 1) or as determined by multiparameter immune monitoring (arm 2). Results: Patients were on study a median of 16 months; four received 24 vaccinations. Only one event associated with treatment >grade 2 was observed. Six of 16 (38%) remained metastasis-free at 2 years. PAP-specific T cells were elicited in 12 of 16 (75%), predominantly of a Th1 phenotype, which persisted in frequency and phenotype for at least 1 year. IFNγ-secreting T-cell responses measured by ELISPOT were detectable in 5 of 13 individuals at 1 year, and this was not statistically different between study arms. The overall median fold change in PSA DT from pretreatment to posttreatment was 1.6 (range, 0.6–7.0; P = 0.036). Conclusions: Repetitive immunization with a plasmid DNA vaccine was safe and elicited Th1-biased antigen-specific T cells that persisted over time. Modifications in the immunization schedule based on real-time immune monitoring did not increase the frequency of patients developing effector and memory T-cell responses with this DNA vaccine. Clin Cancer Res; 20(14); 3692–704. ©2014 AACR.


Cancer Immunology, Immunotherapy | 2011

CD8+ T cells specific for the androgen receptor are common in patients with prostate cancer and are able to lyse prostate tumor cells

Brian M. Olson; Douglas G. McNeel

The androgen receptor (AR) is a hormone receptor that plays a critical role in prostate cancer, and depletion of its ligand has long been the cornerstone of treatment for metastatic disease. Here, we evaluate the AR ligand-binding domain (LBD) as an immunological target, seeking to identify HLA-A2-restricted epitopes recognized by T cells in prostate cancer patients. Ten AR LBD-derived, HLA-A2-binding peptides were identified and ranked with respect to HLA-A2 affinity and were used to culture peptide-specific T cells from HLA-A2+ prostate cancer patients. These T-cell cultures identified peptide-specific T cells specific for all ten peptides in at least one patient, and T cells specific for peptides AR805 and AR811 were detected in over half of patients. Peptide-specific CD8+ T-cell clones were then isolated and characterized for prostate cancer cytotoxicity and cytokine expression, identifying that AR805 and AR811 CD8+ T-cell clones could lyse prostate cancer cells in an HLA-A2-restricted fashion, but only AR811 CTL had polyfunctional cytokine expression. Epitopes were confirmed using immunization studies in HLA-A2 transgenic mice, in which the AR LBD is an autologous antigen with an identical protein sequence, which showed that mice immunized with AR811 developed peptide-specific CTL that lyse HLA-A2+ prostate cancer cells. These data show that AR805 and AR811 are HLA-A2-restricted epitopes for which CTL can be commonly detected in prostate cancer patients. Moreover, CTL responses specific for AR811 can be elicited by direct immunization of A2/DR1 mice. These findings suggest that it may be possible to elicit an anti-prostate tumor immune response by augmenting CTL populations using AR LBD-based vaccines.


Expert Review of Vaccines | 2012

Antigen loss and tumor-mediated immunosuppression facilitate tumor recurrence.

Brian M. Olson; Douglas G. McNeel

Evaluation of: Jensen SM, Twitty CG, Maston LD et al. Increased frequency of suppressive regulatory T cells and T cell-mediated antigen loss results in murine melanoma recurrence. J. Immunol. 189(2), 767–776 (2012). While tumor immunotherapy has seen notable success in recent years, mechanisms that tumors utilize to escape immune responses have provided significant hurdles to maximal clinical benefit. Escape mechanisms such as antigen loss, decreased MHC expression, as well as tumor-mediated suppressive effects on antitumor immune responses, can cause the most potent antitumor immune response to be rendered powerless at the tumor site. In this study, the authors show that the adoptive transfer of tumor antigen-specific CD4+ and CD8+ T cells combined with tumor cell immunization can elicit regression of established subcutaneous tumors in lymphopenic, but not lymphoreplete, animals. However, using a suboptimal dose of transferred cells followed by vaccination, the authors identify the development of recurrent tumors with reduced antigen expression. These tumors could still be eradicated in similarly treated animals; however, they found that transferred CD4+ T cells from animals with recurrent tumors acquired a suppressive phenotype. This work highlights the importance of understanding mechanisms of tumor escape, particularly underscoring the role of the tumor in modulating antigen-specific immune responses, and the critical importance of finding mechanisms to avoid the development of viable escape variants.


Frontiers in Oncology | 2013

Monitoring Regulatory Immune Responses in Tumor Immunotherapy Clinical Trials

Brian M. Olson; Douglas G. McNeel

While immune monitoring of tumor immunotherapy often focuses on the generation of productive Th1-type inflammatory immune responses, the importance of regulatory immune responses is often overlooked, despite the well-documented effects of regulatory immune responses in suppressing anti-tumor immunity. In a variety of malignancies, the frequency of regulatory cell populations has been shown to correlate with disease progression and a poor prognosis, further emphasizing the importance of characterizing the effects of immunotherapy on these populations. This review focuses on the role of suppressive immune populations (regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages) in inhibiting anti-tumor immunity, how these populations have been used in the immune monitoring of clinical trials, the prognostic value of these responses, and how the monitoring of these regulatory responses can be improved in the future.


Cancer Immunology, Immunotherapy | 2013

The androgen receptor: a biologically relevant vaccine target for the treatment of prostate cancer

Brian M. Olson; Laura E. Johnson; Douglas G. McNeel

The androgen receptor (AR) plays an essential role in the development and progression of prostate cancer. However, while it has long been the primary molecular target of metastatic prostate cancer therapies, it has not been explored as an immunotherapeutic target. In particular, the AR ligand-binding domain (LBD) is a potentially attractive target, as it has an identical sequence among humans as well as among multiple species, providing a logical candidate for preclinical evaluation. In this report, we evaluated the immune and anti-tumor efficacy of a DNA vaccine targeting the AR LBD (pTVG-AR) in relevant rodent preclinical models. We found immunization of HHDII-DR1 mice, which express human HLA-A2 and HLA-DR1, with pTVG-AR augmented AR LBD HLA-A2-restricted peptide-specific, cytotoxic immune responses in vivo that could lyse human prostate cancer cells. Using an HLA-A2-expressing autochthonous model of prostate cancer, immunization with pTVG-AR augmented HLA-A2-restricted immune responses that could lyse syngeneic prostate tumor cells and led to a decrease in tumor burden and an increase in overall survival of tumor-bearing animals. Finally, immunization decreased prostate tumor growth in Copenhagen rats that was associated with a Th1-type immune response. These data show that the AR is as a prostate cancer immunological target antigen and that a DNA vaccine targeting the AR LBD is an attractive candidate for clinical evaluation.

Collaboration


Dive into the Brian M. Olson's collaboration.

Top Co-Authors

Avatar

Douglas G. McNeel

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Laura E. Johnson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jordan T. Becker

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Brian T. Rekoske

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jens C. Eickhoff

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Richard R. Burgess

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Veit Bergendahl

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Bryan T. Glaser

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Edward J. Dunphy

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Eric S. Bradley

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge