Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas G. McNeel is active.

Publication


Featured researches published by Douglas G. McNeel.


Cancer Research | 2009

Potentiating Endogenous Antitumor Immunity to Prostate Cancer through Combination Immunotherapy with CTLA4 Blockade and GM-CSF

Lawrence Fong; Serena S. Kwek; Shaun O'Brien; Brian Kavanagh; Douglas G. McNeel; Vivian Weinberg; Amy M. Lin; Jonathan E. Rosenberg; Charles J. Ryan; Brian I. Rini; Eric J. Small

CTL-associated antigen 4 (CTLA4) is a costimulatory molecule expressed on activated T cells that delivers an inhibitory signal to these T cells. CTLA4 blockade with antibody treatment has been shown to augment antitumor immunity in animal models and is being developed as a treatment for cancer patients. As has been seen in preclinical models, combining CTLA4 blockade and granulocyte macrophage colony-stimulating factor (GM-CSF)-based immunotherapies can enhance the antitumor efficacy of this approach. We therefore examined whether CTLA4 blockade could be combined with GM-CSF administration. We treated 24 patients with metastatic, castration-resistant prostate cancer in a phase I trial where sequential cohorts were treated with increasing doses of ipilimumab, a fully human anti-CTLA4 antibody. Study subjects also received s.c. injections of GM-CSF at a fixed dose. Of the six patients treated at the highest dose level, three had confirmed PSA declines of >50%, including one patient that had a partial response in visceral metastases. Expansion of activated, circulating CD25(+) CD69(+) CD8(+) T cells occurred more frequently at higher doses of treatment and was greater in magnitude than was seen in patients who received the same doses of either ipilimumab or GM-CSF alone. By screening sera with protein arrays, we showed that our treatment can induce antibody responses to NY-ESO-1. These results show that this combination immunotherapy can induce the expansion not only of activated effector CD8 T cells in vivo but also of T cells that are specific for known tumor-associated antigens from the endogenous immune repertoire.


Journal of Clinical Oncology | 2009

Safety and Immunological Efficacy of a DNA Vaccine Encoding Prostatic Acid Phosphatase in Patients With Stage D0 Prostate Cancer

Douglas G. McNeel; Edward J. Dunphy; James G. Davies; Thomas Frye; Laura E. Johnson; Mary Jane Staab; Dorothea Horvath; Jane Straus; Dona Alberti; Rebecca Marnocha; Glenn Liu; Jens C. Eickhoff; George Wilding

PURPOSE Prostatic acid phosphatase (PAP) is a prostate tumor antigen. We have previously demonstrated that a DNA vaccine encoding PAP can elicit antigen-specific CD8+ T cells in rodents. We report here the results of a phase I/IIa trial conducted with a DNA vaccine encoding human PAP in patients with stage D0 prostate cancer. PATIENTS AND METHODS Twenty-two patients were treated in a dose-escalation trial with 100 microg, 500 microg, or 1,500 microg plasmid DNA, coadministered intradermally with 200 microg granulocyte-macrophage colony-stimulating factor as a vaccine adjuvant, six times at 14-day intervals. All patients were observed for 1 year after treatment. RESULTS No significant adverse events were observed. Three (14%) of 22 patients developed PAP-specific IFN gamma-secreting CD8+ T-cells immediately after the treatment course, as determined by enzyme-linked immunospot. Nine (41%) of 22 patients developed PAP-specific CD4+ and/or CD8+ T-cell proliferation. Antibody responses to PAP were not detected. Overall, the prostate-specific antigen (PSA) doubling time was observed to increase from a median 6.5 months pretreatment to 8.5 months on-treatment (P = .033), and 9.3 months in the 1-year post-treatment period (P = .054). CONCLUSION The demonstration that a DNA vaccine encoding PAP is safe, elicits an antigen-specific T-cell response, and may be associated with an increased PSA doubling time suggests that a multi-institutional phase II trial designed to evaluate clinical efficacy is warranted.


Clinical Cancer Research | 2005

Phase I Trial of a Monoclonal Antibody Specific for αvβ3 Integrin (MEDI-522) in Patients with Advanced Malignancies, Including an Assessment of Effect on Tumor Perfusion

Douglas G. McNeel; Jens C. Eickhoff; Fred T. Lee; David M. King; Dona Alberti; James P. Thomas; Andreas Friedl; Jill M. Kolesar; Rebecca Marnocha; Jennifer Volkman; Jianliang Zhang; Luz Hammershaimb; James A. Zwiebel; George Wilding

At present, a variety of agents targeting tumor angiogenesis are under clinical investigation as new therapies for patients with cancer. Overexpression of the αvβ3 integrin on tumor vasculature has been associated with an aggressive phenotype of several solid tumor types. Murine models have shown that antibodies targeting the αvβ3 integrin can affect tumor vasculature and block tumor formation and metastasis. These findings suggest that antibodies directed at αvβ3 could be investigated in the treatment of human malignancies. The current phase I dose escalation study evaluated the safety of MEDI-522, a monoclonal antibody specific for the αvβ3 integrin, in patients with advanced malignancies. Twenty-five patients with a variety of metastatic solid tumors were treated with MEDI-522 on a weekly basis with doses ranging from 2 to 10 mg/kg/wk. Adverse events were assessed weekly; pharmacokinetic studies were done; and radiographic staging was done every 8 weeks. In addition, dynamic computed tomography imaging was done at baseline and at 8 weeks in patients with suitable target lesions amenable to analysis, to potentially identify the effect of MEDI-522 on tumor perfusion. Treatment was well tolerated, and a maximum tolerated dose was not identified by traditional dose-limiting toxicities. The major adverse events observed were grade 1 and 2 infusion-related reactions (fever, rigors, flushing, injection site reactions, and tachycardia), low-grade constitutional and gastrointestinal symptoms (fatigue, myalgias, and nausea), and asymptomatic hypophosphatemia. Dynamic computed tomography imaging suggested a possible effect on tumor perfusion with an increase in contrast mean transit time from baseline to the 8-week evaluation with increasing doses of MEDI-522. No complete or partial responses were observed. Three patients with metastatic renal cell cancer experienced prolonged stable disease (34 weeks, >1 and >2 years) on treatment. With this weekly schedule of administration, and in the doses studied, MEDI-522 seems to be without significant toxicity, may have effects on tumor perfusion, and may have clinical activity in renal cell cancer. These findings suggest the MEDI-522 could be further investigated as an antiangiogenic agent for the treatment of cancer.


Journal of Immunotherapy | 2010

DNA Vaccine Encoding Prostatic Acid Phosphatase (PAP) Elicits Long-term T-cell Responses in Patients With Recurrent Prostate Cancer

Jordan T. Becker; Brian M. Olson; Laura E. Johnson; James G. Davies; Edward J. Dunphy; Douglas G. McNeel

Prostatic acid phosphatase (PAP) is a tumor antigen in prostate cancer and the target of several anti-tumor vaccines in earlier clinical trials. Ultimately, the goal of anti-tumor vaccines is to elicit a sustainable immune response, able to eradicate a tumor, or at least restrain its growth. We have investigated plasmid DNA vaccines and have previously conducted a phase 1 trial in which patients with recurrent prostate cancer were vaccinated with a DNA vaccine encoding PAP. In this study, we investigated the immunologic efficacy of subsequent booster immunizations, and conducted more detailed longitudinal immune analysis, to answer several questions aimed at guiding optimal schedules of vaccine administration for future clinical trials. We report that antigen-specific cytolytic T-cell responses were amplified after immunization in 7 of 12 human leukocyte antigen-A2-expressing individuals, and that multiple immunizations seemed necessary to elicit PAP-specific interferon-γ-secreting immune responses detectable by enzyme-linked immunosorbent spot assay. Moreover, among individuals who experienced a ≥200% increase in prostate-specific antigen doubling time, long-term PAP-specific interferon-γ-secreting T-cell responses were detectable in 6 of 8, but in only 1 of 14 individuals without an observed change in prostate-specific antigen doubling time (P=0.001). Finally, we identified that immune responses elicited could be further amplified by subsequent booster immunizations. These results suggest that future trials using this DNA vaccine, and potentially other anti-tumor DNA vaccines, could investigate ongoing schedules of administration with periodic booster immunizations. Moreover, these results suggest that DNA vaccines targeting PAP could potentially be combined in heterologous immunization strategies with other vaccines to further augment PAP-specific T-cell immunity.


Journal of Immunology | 2012

Human Prostate Tumor Antigen–Specific CD8+ Regulatory T Cells Are Inhibited by CTLA-4 or IL-35 Blockade

Brian M. Olson; Ewa Jankowska-Gan; Jordan T. Becker; Dario A. A. Vignali; William J. Burlingham; Douglas G. McNeel

Regulatory T cells play important roles in cancer development and progression by limiting the generation of innate and adaptive anti-tumor immunity. We hypothesized that in addition to natural CD4+CD25+ regulatory T cells (Tregs) and myeloid-derived suppressor cells, tumor Ag–specific Tregs interfere with the detection of anti-tumor immunity after immunotherapy. Using samples from prostate cancer patients immunized with a DNA vaccine encoding prostatic acid phosphatase (PAP) and a trans-vivo delayed-type hypersensitivity (tvDTH) assay, we found that the detection of PAP-specific effector responses after immunization was prevented by the activity of PAP-specific regulatory cells. These regulatory cells were CD8+CTLA-4+, and their suppression was relieved by blockade of CTLA-4, but not IL-10 or TGF-β. Moreover, Ag-specific CD8+ Tregs were detected prior to immunization in the absence of PAP-specific effector responses. These PAP-specific CD8+CTLA-4+ suppressor T cells expressed IL-35, which was decreased after blockade of CTLA-4, and inhibition of either CTLA-4 or IL-35 reversed PAP-specific suppression of tvDTH response. PAP-specific CD8+CTLA-4+ T cells also suppressed T cell proliferation in an IL-35–dependent, contact-independent fashion. Taken together, these findings suggest a novel population of CD8+CTLA-4+ IL-35–secreting tumor Ag–specific Tregs arise spontaneously in some prostate cancer patients, persist during immunization, and can prevent the detection of Ag-specific effector responses by an IL-35–dependent mechanism.


Journal of Clinical Immunology | 2003

Pilot Study of an HLA-A2 Peptide Vaccine Using Flt3 Ligand as a Systemic Vaccine Adjuvant

Douglas G. McNeel; Keith L. Knutson; Kathy Schiffman; Donna R. Davis; Dania Caron; Mary L. Disis

A pilot vaccine study was conducted to test the safety and immunological efficacy of four monthly immunizations of an MHC class I peptide vaccine, the E75 HLA-A2 epitope from HER-2/neu, using flt3 ligand as a systemic vaccine adjuvant. Twenty HLA-A2-expressing subjects with advanced stage prostate cancer were randomly assigned to one of four immunization or treatment schedules: (a) Flt3 ligand (20 μ g/kg per day) administered subcutaneously daily for 14 days on a 28-day cycle, monthly for four months; (b) flt3 ligand course as above with the E75 peptide vaccine administered on day 7 of each flt3 ligand cycle; (c) flt3 ligand course as above with the E75 peptide vaccine administered on day 14 of each flt3 ligand cycle; or (d) E75 peptide admixed with granulocyte–macrophage colony-stimulating factor and administered intradermally once every 28 days, as has previously been reported. The primary endpoints of the study were the determination of safety and immunological efficacy in generating E75-specific T cells as determined by peptide-specific interferon-gamma ELIspot. Adverse events included one grade 3 skin reaction and the development of grade 2 autoimmune hypothyroidism in two subjects with preexisting subclinical autoimmune hypothyroidism. Dendritic cells were markedly increased in the peripheral blood of subjects receiving flt3 ligand with each repetitive cycle, but augmentation of antigen-presenting cells within the dermis was not observed. Apart from a single subject, no significant peptide-specific T-cell responses were detected by ELIspot, whereas delayed-type hypersensitivity responses were detectable in control subjects and in subjects receiving peptide vaccine early in the course of flt3 ligand administration. The absence of robust peripheral immune responses in the current study may be attributable to the small numbers of subjects or differences in the subject population. In addition, the inability of flt3 ligand to augment the number of peripheral skin antigen-presenting cells may have contributed to the absence of robust peptide-specific immunity detectable in the peripheral blood of immunized subjects treated with flt3 ligand.


Clinical Cancer Research | 2016

Immunomodulatory Activity of Nivolumab in Metastatic Renal Cell Carcinoma

Toni K. Choueiri; Mayer Fishman; Bernard Escudier; David F. McDermott; Charles G. Drake; Harriet M. Kluger; Walter M. Stadler; Jose Luis Perez-Gracia; Douglas G. McNeel; Brendan D. Curti; Michael R. Harrison; Elizabeth R. Plimack; Leonard Joseph Appleman; Lawrence Fong; Laurence Albiges; Lewis J. Cohen; Tina C. Young; Scott D. Chasalow; Petra Ross-Macdonald; Shivani Srivastava; Maria Jure-Kunkel; John F. Kurland; Jason S. Simon; Mario Sznol

Purpose: Nivolumab, an anti-PD-1 immune checkpoint inhibitor, improved overall survival versus everolimus in a phase 3 trial of previously treated patients with metastatic renal cell carcinoma (mRCC). We investigated immunomodulatory activity of nivolumab in a hypothesis-generating prospective mRCC trial. Experimental Design: Nivolumab was administered intravenously every 3 weeks at 0.3, 2, or 10 mg/kg to previously treated patients and 10 mg/kg to treatment-naïve patients with mRCC. Baseline and on-treatment biopsies and blood were obtained. Clinical activity, tumor-associated lymphocytes, PD-L1 expression (Dako immunohistochemistry; ≥5% vs. <5% tumor membrane staining), tumor gene expression (Affymetrix U219), serum chemokines, and safety were assessed. Results: In 91 treated patients, median overall survival [95% confidence interval (CI)] was 16.4 months [10.1 to not reached (NR)] for nivolumab 0.3 mg/kg, NR for 2 mg/kg, 25.2 months (12.0 to NR) for 10 mg/kg, and NR for treatment-naïve patients. Median percent change from baseline in tumor-associated lymphocytes was 69% (CD3+), 180% (CD4+), and 117% (CD8+). Of 56 baseline biopsies, 32% had ≥5% PD-L1 expression, and there was no consistent change from baseline to on-treatment biopsies. Transcriptional changes in tumors on treatment included upregulation of IFNγ-stimulated genes (e.g., CXCL9). Median increases in chemokine levels from baseline to C2D8 were 101% (CXCL9) and 37% (CXCL10) in peripheral blood. No new safety signals were identified. Conclusions: Immunomodulatory effects of PD-1 inhibition were demonstrated through multiple lines of evidence across nivolumab doses. Biomarker changes from baseline reflect nivolumab pharmacodynamics in the tumor microenvironment. These data may inform potential combinations. Clin Cancer Res; 22(22); 5461–71. ©2016 AACR.


Clinical & Developmental Immunology | 2010

The SSX Family of Cancer-Testis Antigens as Target Proteins for Tumor Therapy

Heath A. Smith; Douglas G. McNeel

Cancer-testis antigens (CTAs) represent an expanding class of tumor-associated proteins defined on the basis of their tissue-restricted expression to testis or ovary germline cells and frequent ectopic expression in tumor tissue. The expression of CTA in MHC class I-deficient germline cells makes these proteins particularly attractive as immunotherapeutic targets because they serve as essentially tumor-specific antigens for MHC class I-restricted CD8+ T cells. Moreover, because CTAs are expressed in many types of cancer, any therapeutic developed to target these antigens might have efficacy for multiple cancer types. Of particular interest among CTAs is the synovial sarcoma X chromosome breakpoint (SSX) family of proteins, which includes ten highly homologous family members. Expression of SSX proteins in tumor tissues has been associated with advanced stages of disease and worse patient prognosis. Additionally, both humoral and cell-mediated immune responses to SSX proteins have been demonstrated in patients with tumors of varying histological origin, which indicates that natural immune responses can be spontaneously generated to these antigens in cancer patients. The current review will describe the history and identification of this family of proteins, as well as what is known of their function, expression in normal and malignant tissues, and immunogenicity.


Cancer Investigation | 2007

Endothelin Receptor Antagonists in Cancer Therapy

Mihailo Lalich; Douglas G. McNeel; George Wilding; Glenn Liu

Endothelins are a family of peptide compounds which exert regulatory control over cellular processes important for growth, survival, invasion, and angiogenesis. In particular, endothelin-1, acting primarily through the endothelin-A receptor, is implicated in the neoplastic growth of multiple tumor types. In preclinical models, endothelin antagonism inhibits tumor cell proliferation, invasiveness, and new vessel formation, as well as attenuates osteoblastic and pain-related responses to tumor. Clinical testing of an orally bioavailable endothelin antagonist has demonstrated benefit in PSA progression, markers of bone turnover, and pain in men with prostate cancer, but has not demonstrated significant improvement in survival or time to cancer progression. Although this class of drugs is promising for targeted anti-cancer therapy, their role in treatment remains to be defined by completion of future clinical trials.


Human Immunology | 2010

Prostate cancer patients on androgen deprivation therapy develop persistent changes in adaptive immune responses.

Matthew D. Morse; Douglas G. McNeel

Prostate cancer is a significant cause of morbidity and mortality among men worldwide. The cornerstone treatment for metastatic prostate cancer is androgen deprivation, which has known effects on prostate tissue apoptosis and thymic regrowth. These findings, together with interest in developing immune-based treatments for prostate cancer, lead us to question whether androgen deprivation causes changes in the adaptive immune responses of prostate cancer patients, and whether the timing of changes has implications for the sequencing of immunotherapies in combination with androgen deprivation. Peripheral blood mononuclear cells were obtained from patients before beginning androgen deprivation therapy (ADT) and at several time points thereafter. These cells were analyzed for the frequency of specific lymphocyte populations and their response to stimulation. The development of prostate antigen-specific immune responses was assessed using SEREX (serological identification of antigens by recombinant expression). Patients developed expansion of the naive T-cell compartment persisting over the course of androgen deprivation, together with an increase in effector-cell response to stimulation, and the generation of prostate tissue-associated IgG antibody responses, implying a potential benefit to the use of ADT in combination with prostate cancer-directed immunotherapies. The optimal timing and sequence of androgen deprivation with immune-based therapies awaits future experimental evaluation.

Collaboration


Dive into the Douglas G. McNeel's collaboration.

Top Co-Authors

Avatar

Brian M. Olson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Glenn Liu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Laura E. Johnson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jens C. Eickhoff

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

George Wilding

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Mary Jane Staab

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jordan T. Becker

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Lawrence Fong

University of California

View shared research outputs
Top Co-Authors

Avatar

Viswa Teja Colluru

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Brian T. Rekoske

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge