Brian M. Ward
University of Rochester Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brian M. Ward.
Journal of Virology | 2001
Brian M. Ward; Bernard Moss
ABSTRACT Two mechanisms have been proposed for the intracellular movement of enveloped vaccinia virus virions: rapid actin polymerization and microtubule association. The first mechanism is used by the intracellular pathogens Listeria andShigella, and the second is used by cellular vesicles transiting from the Golgi network to the plasma membrane. To distinguish between these models, two recombinant vaccinia viruses that express the B5R membrane protein fused to enhanced green fluorescent protein (GFP) were constructed. One had Tyr112 and Tyr132 of the A36R membrane protein, which are required for phosphorylation and the nucleation of actin tails, conservatively changed to Phe residues; the other had the A36R open reading frame deleted. Although the Tyr mutant was impaired in Tyr phosphorylation and actin tail formation, digital video and time-lapse confocal microscopy demonstrated that virion movement from the juxtanuclear region to the periphery was saltatory with maximal speeds of >2 μm/s and was inhibited by the microtubule-depolymerizing drug nocodazole. Moreover, this actin tail-independent movement was indistinguishable from that of a control virus with an unmutated A36R gene and closely resembled the movement of vesicles on microtubules. However, in the absence of actin tails, the Tyr mutant did not induce the formation of motile, virus-tipped microvilli and had a reduced ability to spread from cell to cell. The deletion mutant was more severely impaired, suggesting that the A36R protein has additional roles. Optical sections of unpermeabilized, B5R antibody-stained cells that expressed GFP-actin and were infected with wild-type vaccinia virus revealed that all actin tails were associated with virions on the cell surface. We concluded that the intracellular movement of intracellular enveloped virions occurs on microtubules and that the motile actin tails enhance extracellular virus spread to neighboring cells.
Journal of Virology | 2001
Brian M. Ward; Bernard Moss
ABSTRACT We produced an infectious vaccinia virus that expressed the B5R envelope glycoprotein fused to the enhanced green fluorescent protein (GFP), allowing us to visualize intracellular virus movement in real time. Previous transfection studies indicated that fusion of GFP to the C-terminal cytoplasmic domain of B5R did not interfere with Golgi localization of the viral protein. To determine whether B5R-GFP was fully functional, we started with a B5R deletion mutant that made small plaques and inserted the B5R-GFP gene into the original B5R locus. The recombinant virus made normal-sized plaques and acquired the ability to form actin tails, indicating reversal of the mutant phenotype. Moreover, immunogold electron microscopy revealed that both intracellular enveloped virions (IEV) and extracellular enveloped virions contained B5R-GFP. By confocal microscopy of live infected cells, we visualized individual fluorescent particles, corresponding to IEV in size and shape, moving from a juxtanuclear location to the periphery of the cell, where they usually collected prior to association with actin tails. The fluorescent particles could be seen emanating from cells at the tips of microvilli. Using a digital camera attached to an inverted fluorescence microscope, we acquired images at 1 frame/s. At this resolution, IEV movement appeared saltatory; in some frames there was no net movement, whereas in others movement exceeded 2 μm/s. Further studies indicated that IEV movement was reversibly arrested by the microtubule-depolymerizing drug nocodazole. This result, together with the direction, speed, and saltatory motion of IEV, was consistent with a role for microtubules in intracellular transport of IEV.
The Plant Cell | 1994
Erica Pascal; Anton A. Sanderfoot; Brian M. Ward; Richard Medville; Robert Turgeon; Sondra G. Lazarowitz
Plant viruses encode movement proteins that are essential for infection of the host but are not required for viral replication or encapsidation. Squash leaf curl virus (SqLCV), a bipartite geminivirus with a single-stranded DNA genome, encodes two movement proteins, BR1 and BL1, that have been implicated in separate functions in viral movement. To further elucidate these functions, we have investigated the nucleic acid binding properties and cellular localization of BR1 and BL1. In this study, we showed that BR1 binds strongly to single-stranded nucleic acids, with a higher affinity for single-stranded DNA than RNA, and is localized to the nucleus of SqLCV-infected plant cells. In contrast, BL1 binds only weakly to single-stranded nucleic acids and not at all to double-stranded DNA. The nuclear localization of BR1 and the previously demonstrated plasma membrane localization of BL1 were also observed when these proteins were expressed from baculovirus vectors in Spodoptera frugiperda insect cells. The biochemical properties and cellular locations of BR1 and BL1 suggest a model for SqLCV movement whereby BR1 is involved in the shuttling of the genome in and/or out of the nucleus and BL1 acts at the plasma membrane/cell wall to facilitate viral movement across cell boundaries.
Journal of Virology | 2009
Ha Youn Lee; David J. Topham; Sung Yong Park; Joseph A. Hollenbaugh; John J. Treanor; Tim R. Mosmann; Xia Jin; Brian M. Ward; Hongyu Miao; Jeanne Holden-Wiltse; Alan S. Perelson; Martin S. Zand; Hulin Wu
ABSTRACT The cellular immune response to primary influenza virus infection is complex, involving multiple cell types and anatomical compartments, and is difficult to measure directly. Here we develop a two-compartment model that quantifies the interplay between viral replication and adaptive immunity. The fidelity of the model is demonstrated by accurately confirming the role of CD4 help for antibody persistence and the consequences of immune depletion experiments. The model predicts that drugs to limit viral infection and/or production must be administered within 2 days of infection, with a benefit of combination therapy when administered early, and cytotoxic CD8 T cells in the lung are as effective for viral clearance as neutralizing antibodies when present at the time of challenge. The model can be used to investigate explicit biological scenarios and generate experimentally testable hypotheses. For example, when the adaptive response depends on cellular immune cell priming, regulation of antigen presentation has greater influence on the kinetics of viral clearance than the efficiency of virus neutralization or cellular cytotoxicity. These findings suggest that the modulation of antigen presentation or the number of lung resident cytotoxic cells and the combination drug intervention are strategies to combat highly virulent influenza viruses. We further compared alternative model structures, for example, B-cell activation directly by the virus versus that through professional antigen-presenting cells or dendritic cell licensing of CD8 T cells.
Journal of Virology | 2004
Tatiana G. Senkevich; Brian M. Ward; Bernard Moss
ABSTRACT The A28L gene of vaccinia virus is conserved in all poxviruses and encodes a protein that is anchored to the surface of infectious intracellular mature virions (IMV) and consequently lies beneath the additional envelope of extracellular virions. A conditional lethal recombinant vaccinia virus, vA28-HAi, with an inducible A28L gene, undergoes a single round of replication in the absence of inducer, producing IMV, as well as extracellular virions with actin tails, but fails to infect neighboring cells. We show here that purified A28-deficient IMV appeared to be indistinguishable from wild-type IMV and were competent to synthesize RNA in vitro. Nevertheless, A28-deficient virions did not induce cytopathic effects, express early genes, or initiate a productive infection. Although A28-deficient IMV bound to the surface of cells, their cores did not penetrate into the cytoplasm. An associated defect in membrane fusion was demonstrated by the failure of low pH to trigger syncytium formation when cells were infected with vA28-HAi in the absence of inducer (fusion from within) or when cells were incubated with a high multiplicity of A28-deficient virions (fusion from without). The correlation between the entry block and the inability of A28-deficient virions to mediate fusion provided compelling evidence for a relationship between these events. Because repression of A28 inhibited cell-to-cell spread, which is mediated by extracellular virions, all forms of vaccinia virus regardless of their outer coat must use a common A28-dependent mechanism of cell penetration. Furthermore, since A28 is conserved, all poxviruses are likely to penetrate cells in a similar way.
PLOS Pathogens | 2013
Joseph A. Hollenbaugh; Peter Gee; Jonathon Baker; Michele B. Daly; Sarah M. Amie; Jessica Tate; Natsumi Kasai; Yuka Kanemura; Dong-Hyun Kim; Brian M. Ward; Yoshio Koyanagi; Baek Kim
SAMHD1 is a newly identified anti-HIV host factor that has a dNTP triphosphohydrolase activity and depletes intracellular dNTP pools in non-dividing myeloid cells. Since DNA viruses utilize cellular dNTPs, we investigated whether SAMHD1 limits the replication of DNA viruses in non-dividing myeloid target cells. Indeed, two double stranded DNA viruses, vaccinia and herpes simplex virus type 1, are subject to SAMHD1 restriction in non-dividing target cells in a dNTP dependent manner. Using a thymidine kinase deficient strain of vaccinia virus, we demonstrate a greater restriction of viral replication in non-dividing cells expressing SAMHD1. Therefore, this study suggests that SAMHD1 is a potential innate anti-viral player that suppresses the replication of a wide range of DNA viruses, as well as retroviruses, which infect non-dividing myeloid cells.
Journal of Virology | 2005
Brian M. Ward
ABSTRACT Previous work indicated that vaccinia intracellular mature virus (IMV) utilizes microtubules to move from the viral factory to the site of intracellular envelopment and that expression of the viral A27 protein is required for this transport. To investigate further the role of A27 in IMV intracellular transport, a recombinant vaccinia virus was constructed that had the A27L gene deleted and expressed a yellow fluorescent protein (YFP)-A4 chimera in place of the normal A4 protein. The resulting recombinant, vYFP-A4/ΔA27, produced relatively normal quantities of virus in a one-step growth curve but had a small plaque phenotype. Subsequent experiments demonstrated that vYFP-A4/ΔA27 was severely defective in envelope virus production. Despite the absence of A27, live digital video fluorescent microscopy visualized YFP-labeled IMV movement in cells infected with the recombinant. Virion movement approached 3 μm/s and was sensitive to the microtubule depolymerizing drug nocodazole. In addition, IMV could be discerned transiting away from and back towards viral factories. Immunofluorescent staining determined that the distance traveled by A27-deficient virions was sufficient for transport to the site of envelopment. These results indicate that IMVs are capable of bidirectional movement on microtubules, suggesting that they are able to interact with both kinesin and dynein microtubule motors in the absence of A27 and that the distance traveled is sufficient to deliver IMV to the site of wrapping.
Journal of Virology | 2004
Brian M. Ward; Bernard Moss
ABSTRACT Previous work demonstrated that intracellular enveloped vaccinia virus virions use microtubules to move from the site of membrane wrapping to the cell periphery. The mechanism and direction of intracellular virion movement predicted that viral proteins directly or indirectly interact with the microtubule motor protein kinesin. The yeast two-hybrid assay was used to test for interactions between the light chain of kinesin and the cytoplasmic tails from five viral envelope proteins. We found that the N-terminal tetratricopeptide repeat region of the kinesin light chain (KLC-TPR) interacted with the cytoplasmic tail of the viral A36R protein. A series of C- and N-terminal truncations of A36R further defined a region from residues 81 to 111 that was sufficient for interaction with KLC-TPR. Interactions were confirmed by using pull-down assays with purified glutathione S-transferase (GST)-A36R and 35S-labeled KLC-TPR. The defined region on A36R for interaction with kinesin overlaps the recently defined region (residues 91 to 111) for interaction with the A33R envelope protein. The yeast three-hybrid system was used to demonstrate that expression of A33R interrupted the interaction between A36R and KLC-TPR, indicating that the binding of A36R is mutually exclusive to either A33R or kinesin. Pull-down assays with purified GST-A36R and 35S-labeled KLC-TPR in the presence of competing A33R corroborated these findings. Collectively, these results demonstrated that the viral A36R protein interacts directly with the microtubule motor protein kinesin and that the viral protein A33R may regulate this interaction.
Journal of Virology | 2000
Brian M. Ward; Bernard Moss
ABSTRACT The vaccinia virus B5R type I integral membrane protein accumulates in the Golgi network, from where it becomes incorporated into the envelope of extracellular virions. Our objective was to determine the domains of B5R responsible for Golgi membrane targeting in the absence of other viral components. Fusion of an enhanced green fluorescent protein to the C terminus of B5R allowed imaging of the chimeric protein without altering intracellular trafficking and Golgi network localization in transfected cells. Deletion or swapping of B5R domains with corresponding regions of the vesicular stomatitis virus G protein, which is targeted to the plasma membrane, indicated that (i) the N-terminal extracellular domain of B5R had no specific role in Golgi apparatus localization, (ii) the transmembrane domain of B5R was sufficient for exiting the endoplasmic reticulum, and (iii) removal of the cytoplasmic tail impaired Golgi network localization and increased the accumulation of B5R in the plasma membrane. Further experiments demonstrated that the cytoplasmic tail mediated internalization of B5R from the plasma membrane, suggesting a retrieval mechanism. Mutagenesis revealed residues required for Golgi membrane localization and efficient plasma membrane retrieval of the B5R protein: a tyrosine at residue 310 and two adjacent leucines at residues 315 and 316.
The Plant Cell | 1999
Brian M. Ward; Sondra G. Lazarowitz
The nuclear export of proteins and RNAs has been studied in heterokaryons or by microinjecting test substrates into nuclei of HeLa cells or Xenopus oocytes. We have previously shown that the two movement proteins BR1 and BL1 encoded by the plant pathogenic squash leaf curl virus act in a coordinated manner to facilitate virus cell-to-cell movement and that one of these (BR1) is a nuclear shuttle protein. By using a novel in vivo cell-based assay for nuclear export in which nuclear-localized BR1 is trapped by BL1 and redirected to the cortical cytoplasm, we demonstrate that residues 177 to 198 of BR1 contain a leucine-rich nuclear export signal (NES) of the type found in the Rev protein encoded by the human immunodeficiency virus and in Xenopus TFIIIA. We further show that the TFIIIA NES can functionally replace the NES of BR1 in both nuclear export and viral infectivity. These findings suggest that this basic pathway for nuclear export is highly conserved among plant and animal cells and in yeast.