Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian M. Waters is active.

Publication


Featured researches published by Brian M. Waters.


Plant Physiology | 2006

Mutations in Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 Reveal Their Roles in Metal Ion Homeostasis and Loading of Metal Ions in Seeds

Brian M. Waters; Heng-Hsuan Chu; Raymond J. DiDonato; Louis A. Roberts; Robynn Bosler Eisley; Brett Lahner; David E. Salt; Elsbeth L. Walker

Here, we describe two members of the Arabidopsis (Arabidopsis thaliana) Yellow Stripe-Like (YSL) family, AtYSL1 and AtYSL3. The YSL1 and YSL3 proteins are members of the oligopeptide transporter family and are predicted to be integral membrane proteins. YSL1 and YSL3 are similar to the maize (Zea mays) YS1 phytosiderophore transporter (ZmYS1) and the AtYSL2 iron (Fe)-nicotianamine transporter, and are predicted to transport metal-nicotianamine complexes into cells. YSL1 and YSL3 mRNAs are expressed in both root and shoot tissues, and both are regulated in response to the Fe status of the plant. β-Glucuronidase reporter expression, driven by YSL1 and YSL3 promoters, reveals expression patterns of the genes in roots, leaves, and flowers. Expression was highest in senescing rosette leaves and cauline leaves. Whereas the single mutants ysl1 and ysl3 had no visible phenotypes, the ysl1ysl3 double mutant exhibited Fe deficiency symptoms, such as interveinal chlorosis. Leaf Fe concentrations are decreased in the double mutant, whereas manganese, zinc, and especially copper concentrations are elevated. In seeds of double-mutant plants, the concentrations of Fe, zinc, and copper are low. Mobilization of metals from leaves during senescence is impaired in the double mutant. In addition, the double mutant has reduced fertility due to defective anther and embryo development. The proposed physiological roles for YSL1 and YSL3 are in delivery of metal micronutrients to and from vascular tissues.


Journal of Experimental Botany | 2009

Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain

Brian M. Waters; Cristobal Uauy; Jorge Dubcovsky; Michael A. Grusak

The NAM-B1 gene is a NAC transcription factor that affects grain nutrient concentrations in wheat (Triticum aestivum). An RNAi line with reduced expression of NAM genes has lower grain protein, iron (Fe), and zinc (Zn) concentrations. To determine whether decreased remobilization, lower plant uptake, or decreased partitioning to grain are responsible for this phenotype, mineral dynamics were quantified in wheat tissues throughout grain development. Control and RNAi wheat were grown in potting mix and hydroponics. Mineral (Ca, Cu, Fe, K, Mg, Mn, P, S, and Zn) and nitrogen (N) contents of organs were determined at regular intervals to quantify the net remobilization from vegetative tissues and the accumulation of nutrients in grain. Total nutrient accumulation was similar between lines, but grain Fe, Zn, and N were at lower concentrations in the NAM knockdown line. In potting mix, net remobilization of N, Fe, and Zn from vegetative tissues was impaired in the RNAi line. In hydroponics with ample nutrients, net remobilization was not observed, but grain Fe and Zn contents and concentrations remained lower in the RNAi line. When Fe or Zn was withheld post-anthesis, both lines demonstrated remobilization. These results suggest that a major effect of the NAM genes is an increased efflux of nutrients from the vegetative tissues and a higher partitioning of nutrients to grain.


Plant Science | 2011

Moving micronutrients from the soil to the seeds: Genes and physiological processes from a biofortification perspective

Brian M. Waters; Renuka P. Sankaran

The micronutrients iron (Fe), zinc (Zn), and copper (Cu) are essential for plants and the humans and animals that consume plants. Increasing the micronutrient density of staple crops, or biofortification, will greatly improve human nutrition on a global scale. This review discusses the processes and genes needed to translocate micronutrients through the plant to the developing seeds, and potential strategies for developing biofortified crops.


New Phytologist | 2008

Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations

Brian M. Waters; Michael A. Grusak

Biofortification of foods, achieved by increasing the concentrations of minerals such as iron (Fe) and zinc (Zn), is a goal of plant scientists. Understanding genes that influence seed mineral concentration in a model plant such as Arabidopsis could help in the development of nutritionally enhanced crop cultivars. Quantitative trait locus (QTL) mapping for seed concentrations of calcium (Ca), copper (Cu), Fe, potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), sulfur (S), and Zn was performed using two recombinant inbred line (RIL) populations, Columbia (Col) x Landsberg erecta (Ler) and Cape Verde Islands (Cvi) x Ler, grown on multiple occasions. QTL mapping was also performed using data from silique hulls and the ratio of seed:hull mineral concentration of the Cvi x Ler population. Over 100 QTLs that affected seed mineral concentration were identified. Twenty-nine seed QTLs were found in more than one experiment, and several QTLs were found for both seed and hull mineral traits. A number of candidate genes affecting seed mineral concentration are discussed. These results indicate that A. thaliana is a suitable and convenient model for discovery of genes that affect seed mineral concentration. Some strong QTLs had no obvious candidate genes, offering the possibility of identifying unknown genes that affect mineral uptake and translocation to seeds.


Journal of Experimental Botany | 2012

Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana

Brian M. Waters; Samuel A. McInturf; Ricardo J. Stein

Iron (Fe) is an essential plant micronutrient, and its deficiency limits plant growth and development on alkaline soils. Under Fe deficiency, plant responses include up-regulation of genes involved in Fe uptake from the soil. However, little is known about shoot responses to Fe deficiency. Using microarrays to probe gene expression in Kas-1 and Tsu-1 ecotypes of Arabidopsis thaliana, and comparison with existing Col-0 data, revealed conserved rosette gene expression responses to Fe deficiency. Fe-regulated genes included known metal homeostasis-related genes, and a number of genes of unknown function. Several genes responded to Fe deficiency in both roots and rosettes. Fe deficiency led to up-regulation of Cu,Zn superoxide dismutase (SOD) genes CSD1 and CSD2, and down-regulation of FeSOD genes FSD1 and FSD2. Eight microRNAs were found to respond to Fe deficiency. Three of these (miR397a, miR398a, and miR398b/c) are known to regulate transcripts of Cu-containing proteins, and were down-regulated by Fe deficiency, suggesting that they could be involved in plant adaptation to Fe limitation. Indeed, Fe deficiency led to accumulation of Cu in rosettes, prior to any detectable decrease in Fe concentration. ccs1 mutants that lack functional Cu,ZnSOD proteins were prone to greater oxidative stress under Fe deficiency, indicating that increased Cu concentration under Fe limitation has an important role in oxidative stress prevention. The present results show that Cu accumulation, microRNA regulation, and associated differential expression of Fe and CuSOD genes are coordinated responses to Fe limitation.


Journal of Experimental Botany | 2012

Use of natural variation reveals core genes in the transcriptome of iron-deficient Arabidopsis thaliana roots

Ricardo J. Stein; Brian M. Waters

Iron (Fe) is an essential mineral micronutrient for plants and animals. Plants respond to Fe deficiency by increasing root uptake capacity. Identification of gene networks for Fe uptake and homeostasis could result in improved crop growth and nutritional value. Previous studies have used microarrays to identify a large number of genes regulated by Fe deficiency in roots of three Arabidopsis ecotypes. However, a large proportion of these genes may be involved in secondary or genotype-influenced responses rather than in a universal role in Fe uptake or homeostasis. Here we show that a small percentage of the Fe deficiency transcriptome of two contrasting ecotypes, Kas-1 and Tsu-1, was shared with other ecotypes. Kas-1 and Tsu-1 had different timing and magnitude of ferric reductase activity upon Fe withdrawal, and different categories of overrepresented Fe-regulated genes. To gain insights into universal responses of Arabidopsis to Fe deficiency, the Kas-1 and Tsu-1 transcriptomes were compared with those of Col-0, Ler, and C24. In early Fe deficiency (24–48 h), no Fe-downregulated genes and only 10 upregulated genes were found in all ecotypes, and only 20 Fe-downregulated and 58 upregulated genes were found in at least three of the five ecotypes. Supernode gene networks were constructed to visualize conserved Fe homeostasis responses. Contrasting gene expression highlighted different responses to Fe deficiency between ecotypes. This study demonstrates the use of natural variation to identify central Fe-deficiency-regulated genes in plants, and identified genes with potential new roles in signalling during Fe deficiency.


Functional & Integrative Genomics | 2015

Switchgrass (Panicum virgatum L) flag leaf transcriptomes reveal molecular signatures of leaf development, senescence, and mineral dynamics

Nathan A. Palmer; Teresa Donze-Reiner; David P. Horvath; Tiffany Heng-Moss; Brian M. Waters; Christian M. Tobias; Gautam Sarath

Switchgrass flag leaves can be expected to be a source of carbon to the plant, and its senescence is likely to impact the remobilization of nutrients from the shoots to the rhizomes. However, many genes have not been assigned a function in specific stages of leaf development. Here, we characterized gene expression in flag leaves over their development. By merging changes in leaf chlorophyll and the expression of genes for chlorophyll biosynthesis and degradation, a four-phase molecular roadmap for switchgrass flag leaf ontogeny was developed. Genes associated with early leaf development were up-regulated in phase 1. Phase 2 leaves had increased expression of genes for chlorophyll biosynthesis and those needed for full leaf function. Phase 3 coincided with the most active phase for leaf C and N assimilation. Phase 4 was associated with the onset of senescence, as observed by declining leaf chlorophyll content, a significant up-regulation in transcripts coding for enzymes involved with chlorophyll degradation, and in a large number of senescence-associated genes. Of considerable interest were switchgrass NAC transcription factors with significantly higher expression in senescing flag leaves. Two of these transcription factors were closely related to a wheat NAC gene that impacts mineral remobilization. The third switchgrass NAC factor was orthologous to an Arabidopsis gene with a known role in leaf senescence. Other genes coding for nitrogen and mineral utilization, including ureide, ammonium, nitrate, and molybdenum transporters, shared expression profiles that were significantly co-regulated with the expression profiles of the three NAC transcription factors. These data provide a good starting point to link shoot senescence to the onset of dormancy in field-grown switchgrass.


New Phytologist | 2011

Moving magnesium in plant cells

Brian M. Waters

Magnesium (Mg) is among the most abundant mineral elements in plants, yet the knowledge of which genes control its accumulation in specific tissues and organelles lags behind that of many other mineral elements. Only in recent years has identification of important molecular play ers begun to take shape. In this issue of New Phytologist, Conn et al. (pp. 583–594) shed additional light on two Mg transporters that play important roles in accumulation of Mg in leaf cell vacuoles. Using subcellular-level ion measurements on leaves, gene expression measurements after single-cell sampling, a genetic approach, and clever use of calcium (Ca) and Mg supply to plants or detached leaves, Conn et al. have demonstrated that vacuoles of mesophyll rather than epidermal or bundle sheath cell types of Arabidopsis leaves are the main sites of Mg accumulation. They have also shown the effects of mutations in MRS2-1 and MRS2-5 genes on this accumulation and a role for these


Current Opinion in Plant Biology | 2011

The role of transition metal homeostasis in plant seed development.

Elsbeth L. Walker; Brian M. Waters

For human health, transition metal accumulation in edible seeds like cereal grains is of worldwide importance, since Fe and Zn deficiencies are among the most prevalent human nutritional disorders in the world. There have been many recent developments in our understanding of the patterns in which transition metals accumulate in the seeds, the identity of some specific transporters that are required for efficient seed metal accumulation, and the central role played by the ubiquitous plant metal chelator nicotianamine (NA). These and other recent discoveries will be reviewed here.


Plant Science | 2015

Metabolomic profiling from leaves and roots of tomato (Solanum lycopersicum L.) plants grown under nitrogen, phosphorus or potassium-deficient condition.

Jwa-Kyung Sung; Su-Yeon Lee; Ye-Jin Lee; Sang-Keun Ha; Beom-Heon Song; Tae-Wan Kim; Brian M. Waters; Hari B. Krishnan

Specific metabolic network responses to mineral deficiencies are not well-defined. Here, we conducted a detailed broad-scale identification of metabolic responses of tomato leaves and roots to N, P or K deficiency. Tomato plants were grown hydroponically under optimal (5mM N, 0.5mM P, or 5mM K) and deficient (0.5mM N, 0.05mM P, or 0.5mM K) conditions and metabolites were measured by LC-MS and GC-MS. Based on these results, deficiency of any of these three minerals affected energy production and amino acid metabolism. N deficiency generally led to decreased amino acids and organic acids, and increased soluble sugars. P deficiency resulted in increased amino acids and organic acids in roots, and decreased soluble sugars. K deficiency caused accumulation of soluble sugars and amino acids in roots, and decreased organic acids and amino acids in leaves. Notable metabolic pathway alterations included; (1) increased levels of α-ketoglutarate and raffinose family oligosaccharides in N, P or K-deficient tomato roots, and (2) increased putrescine in K-deficient roots. These findings provide new knowledge of metabolic changes in response to mineral deficiencies.

Collaboration


Dive into the Brian M. Waters's collaboration.

Top Co-Authors

Avatar

Mary J. Guttieri

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

P. Stephen Baenziger

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Michael A. Grusak

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Katherine Frels

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ricardo J. Stein

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Christian M. Tobias

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Elsbeth L. Walker

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Gautam Sarath

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

George L. Graef

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge