Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gautam Sarath is active.

Publication


Featured researches published by Gautam Sarath.


Functional & Integrative Genomics | 2015

Switchgrass (Panicum virgatum L) flag leaf transcriptomes reveal molecular signatures of leaf development, senescence, and mineral dynamics

Nathan A. Palmer; Teresa Donze-Reiner; David P. Horvath; Tiffany Heng-Moss; Brian M. Waters; Christian M. Tobias; Gautam Sarath

Switchgrass flag leaves can be expected to be a source of carbon to the plant, and its senescence is likely to impact the remobilization of nutrients from the shoots to the rhizomes. However, many genes have not been assigned a function in specific stages of leaf development. Here, we characterized gene expression in flag leaves over their development. By merging changes in leaf chlorophyll and the expression of genes for chlorophyll biosynthesis and degradation, a four-phase molecular roadmap for switchgrass flag leaf ontogeny was developed. Genes associated with early leaf development were up-regulated in phase 1. Phase 2 leaves had increased expression of genes for chlorophyll biosynthesis and those needed for full leaf function. Phase 3 coincided with the most active phase for leaf C and N assimilation. Phase 4 was associated with the onset of senescence, as observed by declining leaf chlorophyll content, a significant up-regulation in transcripts coding for enzymes involved with chlorophyll degradation, and in a large number of senescence-associated genes. Of considerable interest were switchgrass NAC transcription factors with significantly higher expression in senescing flag leaves. Two of these transcription factors were closely related to a wheat NAC gene that impacts mineral remobilization. The third switchgrass NAC factor was orthologous to an Arabidopsis gene with a known role in leaf senescence. Other genes coding for nitrogen and mineral utilization, including ureide, ammonium, nitrate, and molybdenum transporters, shared expression profiles that were significantly co-regulated with the expression profiles of the three NAC transcription factors. These data provide a good starting point to link shoot senescence to the onset of dormancy in field-grown switchgrass.


BMC Genomics | 2015

The WRKY transcription factor family and senescence in switchgrass.

Charles I Rinerson; Erin D. Scully; Nathan A. Palmer; Teresa Donze-Reiner; Roel C. Rabara; Prateek Tripathi; Qingxi J. Shen; Scott E. Sattler; Jai S. Rohila; Gautam Sarath; Paul J. Rushton

BackgroundEarly aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields.MethodsAll potential WRKY genes present in the version 1.0 of the switchgrass genome were identified and curated using manual and bioinformatic methods. Expression profiles of WRKY genes in switchgrass flag leaf RNA-Seq datasets were analyzed using clustering and network analyses tools to identify both WRKY and WRKY-associated gene co-expression networks during leaf development and senescence onset.ResultsWe identified 240 switchgrass WRKY genes including members of the RW5 and RW6 families of resistance proteins. Weighted gene co-expression network analysis of the flag leaf transcriptomes across development readily separated clusters of co-expressed genes into thirteen modules. A visualization highlighted separation of modules associated with the early and senescence-onset phases of flag leaf growth. The senescence-associated module contained 3000 genes including 23 WRKYs. Putative promoter regions of senescence-associated WRKY genes contained several cis-element-like sequences suggestive of responsiveness to both senescence and stress signaling pathways. A phylogenetic comparison of senescence-associated WRKY genes from switchgrass flag leaf with senescence-associated WRKY genes from other plants revealed notable hotspots in Group I, IIb, and IIe of the phylogenetic tree.ConclusionsWe have identified and named 240 WRKY genes in the switchgrass genome. Twenty three of these genes show elevated mRNA levels during the onset of flag leaf senescence. Eleven of the WRKY genes were found in hotspots of related senescence-associated genes from multiple species and thus represent promising targets for future switchgrass genetic improvement. Overall, individual WRKY gene expression profiles could be readily linked to developmental stages of flag leaves.


Plant Science | 2014

Senescence, dormancy and tillering in perennial C4 grasses.

Gautam Sarath; Lisa M. Baird; Robert B. Mitchell

Perennial, temperate, C4 grasses, such as switchgrass and miscanthus have been tabbed as sources of herbaceous biomass for the production of green fuels and chemicals based on a number of positive agronomic traits. Although there is important literature on the management of these species for biomass production on marginal lands, numerous aspects of their biology are as yet unexplored at the molecular level. Perenniality, a key agronomic trait, is a function of plant dormancy and winter survival of the below-ground parts of the plants. These include the crowns, rhizomes and meristems that will produce tillers. Maintaining meristem viability is critical for the continued survival of the plants. Plant tillers emerge from the dormant crown and rhizome meristems at the start of the growing period in the spring, progress through a phase of vegetative growth, followed by flowering and eventually undergo senescence. There is nutrient mobilization from the aerial portions of the plant to the crowns and rhizomes during tiller senescence. Signals arising from the shoots and from the environment can be expected to be integrated as the plants enter into dormancy. Plant senescence and dormancy have been well studied in several dicot species and offer a potential framework to understand these processes in temperate C4 perennial grasses. The availability of latitudinally adapted populations for switchgrass presents an opportunity to dissect molecular mechanisms that can impact senescence, dormancy and winter survival. Given the large increase in genomic and other resources for switchgrass, it is anticipated that projected molecular studies with switchgrass will have a broader impact on related species.


BMC Plant Biology | 2012

Karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass

Hugh A. Young; Gautam Sarath; Christian M. Tobias

BackgroundKaryotypes can provide information about taxonomic relationships, genetic aberrations, and the evolutionary origins of species. However, differentiation of the tiny chromosomes of switchgrass (Panicum virgatum L.) and creation of a standard karyotype for this bioenergy crop has not been accomplished due to lack of distinguishing features and polyploidy.ResultsA cytogenetic study was conducted on a dihaploid individual (2nu2009=u20092Xu2009=u200918) of switchgrass to establish a chromosome karyotype. Size differences, condensation patterns, and arm-length ratios were used as identifying features and fluorescence in-situ hybridization (FISH) assigned 5S and 45S rDNA loci to chromosomes 7 and 2 respectively. Both a maize CentC and a native switchgrass centromeric repeat (PviCentC) that shared 73% sequence identity demonstrated a strong signal on chromosome 3. However, only the PviCentC probe labeled the centromeres of all chromosomes. Unexpected PviCentC and 5S rDNA hybidization patterns were consistent with severe reduction or total deletion of these repeats in one subgenome. These patterns were maintained in tetraploid and octoploid individuals. The 45S rDNA repeat produced the expected number of loci in dihaploid, tetraploid and octoploid individuals. Differences observed at the 5S rDNA loci between the upland and lowland ecotypes of switchgrass provided a basis for distinguishing these subpopulations.ConclusionCollectively, these results provide a quantitative karyotype of switchgrass chromosomes. FISH analyses indicate genetic divergence between subgenomes and allow for the classification of switchgrass plants belonging to divergent genetic pools. Furthermore, the karyotype structure and cytogenetic analysis of switchgrass provides a framework for future genetic and genomic studies.


Frontiers in Plant Science | 2013

Towards uncovering the roles of switchgrass peroxidases in plant processes

Aaron J. Saathoff; Teresa Donze; Nathan A. Palmer; Jeff Bradshaw; Tiffany Heng-Moss; Paul Twigg; Christian M. Tobias; Mark Lagrimini; Gautam Sarath

Herbaceous perennial plants selected as potential biofuel feedstocks had been understudied at the genomic and functional genomic levels. Recent investments, primarily by the U.S. Department of Energy, have led to the development of a number of molecular resources for bioenergy grasses, such as the partially annotated genome for switchgrass (Panicum virgatum L.), and some related diploid species. In its current version, the switchgrass genome contains 65,878 gene models arising from the A and B genomes of this tetraploid grass. The availability of these gene sequences provides a framework to exploit transcriptomic data obtained from next-generation sequencing platforms to address questions of biological importance. One such question pertains to discovery of genes and proteins important for biotic and abiotic stress responses, and how these components might affect biomass quality and stress response in plants engineered for a specific end purpose. It can be expected that production of switchgrass on marginal lands will expose plants to diverse stresses, including herbivory by insects. Class III plant peroxidases have been implicated in many developmental responses such as lignification and in the adaptive responses of plants to insect feeding. Here, we have analyzed the class III peroxidases encoded by the switchgrass genome, and have mined available transcriptomic datasets to develop a first understanding of the expression profiles of the class III peroxidases in different plant tissues. Lastly, we have identified switchgrass peroxidases that appear to be orthologs of enzymes shown to play key roles in lignification and plant defense responses to hemipterans.


PLOS ONE | 2014

Contrasting Metabolism in Perenniating Structures of Upland and Lowland Switchgrass Plants Late in the Growing Season

Nathan A. Palmer; Aaron J. Saathoff; Christian M. Tobias; Paul Twigg; Yuannan Xia; Kenneth P. Vogel; Soundararajan Madhavan; Scott E. Sattler; Gautam Sarath

Background Switchgrass (Panicum virgatum L.) is being developed as a bioenergy crop for many temperate regions of the world. One way to increase biomass yields is to move southern adapted lowland cultivars to more northern latitudes. However, many southerly adapted switchgrass germplasm can suffer significant winter kill in northerly climes. Materials and Methods Here, we have applied next-generation sequencing in combination with biochemical analyses to query the metabolism of crowns and rhizomes obtained from two contrasting switchgrass cultivars. Crowns and rhizomes from field-grown lowland (cv Kanlow) and upland (cv Summer) switchgrass cultivars were collected from three randomly selected post-flowering plants. Summer plants were senescing, whereas Kanlow plants were not at this harvest date. Results Principal component analysis (PCA) differentiated between both the Summer and Kanlow transcriptomes and metabolomes. Significant differences in transcript abundances were detected for 8,050 genes, including transcription factors such as WRKYs and those associated with phenylpropanoid biosynthesis. Gene-set enrichment analyses showed that a number of pathways were differentially up-regulated in the two populations. For both populations, protein levels and enzyme activities agreed well with transcript abundances for genes involved in the phenylpropanoid pathway that were up-regulated in Kanlow crowns and rhizomes. The combination of these datasets suggests that dormancy-related mechanisms had been triggered in the crowns and rhizomes of the Summer plants, whereas the crowns and rhizomes of Kanlow plants had yet to enter dormancy. Conclusions Delayed establishment of dormancy at more northerly latitudes could be one factor that reduces winter-survival in the high-yielding Kanlow plants. Understanding the cellular signatures that accompany the transition to dormancy can be used in the future to select plants with improved winter hardiness.


Frontiers in Plant Science | 2014

Global Changes in Mineral Transporters in Tetraploid Switchgrasses ( Panicum virgatum L.)

Nathan A. Palmer; Aaron J. Saathoff; Brian M. Waters; Teresa Donze; Tiffany Heng-Moss; Paul Twigg; Christian M. Tobias; Gautam Sarath

Switchgrass (Panicum virgatum L) is perennial, C4 grass with great potential as a biofuel crop. An in-depth understanding of the mechanisms that control mineral uptake, distribution and remobilization will benefit sustainable production. Nutrients are mobilized from aerial portions to below-ground crowns and rhizomes as a natural accompaniment to above-ground senescence post seed-set. Mineral uptake and remobilization is dependent on transporters, however, little if any information is available about the specific transporters that are needed and how their relative expression changes over a growing season. Using well-defined classes of mineral transporters, we identified 520 genes belonging to 40 different transporter classes in the tetraploid switchgrass genome. Expression patterns were determined for many of these genes using publically available transcriptomic datasets obtained from both greenhouse and field grown plants. Certain transporters showed strong temporal patterns of expression in distinct developmental stages of the plant. Gene-expression was verified for selected transporters using qRT-PCR. By and large these analyses confirmed the developmental stage-specific expression of these genes. Mineral analyses indicated that K, Fe, Mg, Co, and As had a similar pattern of accumulation with apparent limited remobilization at the end of the growing season. These initial analyses will serve as a foundation for more detailed examination of the nutrient biology of switchgrass.


Applied Biochemistry and Biotechnology | 2012

Switchgrass PviCAD1: Understanding Residues Important for Substrate Preferences and Activity

Aaron J. Saathoff; Mark S. Hargrove; Eric J. Haas; Christian M. Tobias; Paul Twigg; Scott E. Sattler; Gautam Sarath

Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step in monolignol biosynthesis. Although plants contain numerous genes coding for CADs, only one or two CADs appear to have a primary physiological role in lignin biosynthesis. Much of this distinction appears to reside in a few key residues that permit reasonable catalytic rates on monolignal substrates. Here, several mutant proteins were generated using switchgrass wild type (WT) PviCAD1 as a template to understand the role of some of these key residues, including a proton shuttling HL duo in the active site. Mutated proteins displayed lowered or limited activity on cinnamylaldehydes and exhibited altered kinetic properties compared to the WT enzyme, suggesting that key residues important for efficient catalysis had been identified. We have also shown that a sorghum ortholog containing EW, instead of HL in its active site, displayed negligible activity against monolignals. These results indicate that lignifying CADs require a specific set of key residues for efficient activity against monolignals.


BMC Plant Biology | 2017

Transcriptional analysis of defense mechanisms in upland tetraploid switchgrass to greenbugs

Teresa Donze-Reiner; Nathan A. Palmer; Erin D. Scully; T. J. Prochaska; Kyle G. Koch; Tiffany Heng-Moss; Jeffrey D. Bradshaw; Paul Twigg; Keenan Amundsen; Scott E. Sattler; Gautam Sarath

BackgroundAphid infestation of switchgrass (Panicum virgatum) has the potential to reduce yields and biomass quality. Although switchgrass-greenbug (Schizaphis graminum; GB) interactions have been studied at the whole plant level, little information is available on plant defense responses at the molecular level.ResultsThe global transcriptomic response of switchgrass cv Summer to GB was monitored by RNA-Seq in infested and control (uninfested) plants harvested at 5, 10, and 15xa0days after infestation (DAI). Differentially expressed genes (DEGs) in infested plants were analyzed relative to control uninfested plants at each time point. DEGs in GB-infested plants induced by 5-DAI included an upregulation of reactive burst oxidases and several cell wall receptors. Expression changes in genes linked to redox metabolism, cell wall structure, and hormone biosynthesis were also observed by 5-DAI. At 10-DAI, network analysis indicated a massive upregulation of defense-associated genes, including NAC, WRKY, and MYB classes of transcription factors and potential ancillary signaling molecules such as leucine aminopeptidases. Molecular evidence for loss of chloroplastic functions was also detected at this time point. Supporting these molecular changes, chlorophyll content was significantly decreased, and ROS levels were elevated in infested plants 10-DAI. Total peroxidase and laccase activities were elevated in infested plants at 10-DAI relative to control uninfested plants. The net result appeared to be a broad scale defensive response that led to an apparent reduction in C and N assimilation and a potential redirection of nutrients away from GB and towards the production of defensive compounds, such as pipecolic acid, chlorogenic acid, and trehalose by 10-DAI. By 15-DAI, evidence of recovery in primary metabolism was noted based on transcript abundances for genes associated with carbon, nitrogen, and nutrient assimilation.ConclusionsExtensive remodeling of the plant transcriptome and the production of ROS and several defensive metabolites in an upland switchgrass cultivar were observed in response to GB feeding. The early loss and apparent recovery in primary metabolism by 15-DAI would suggest that these transcriptional changes in later stages of GB infestation could underlie the recovery response categorized for this switchgrass cultivar. These results can be exploited to develop switchgrass lines with more durable resistance to GB and potentially other aphids.


Bioenergy Research | 2016

Dedicated Herbaceous Biomass Feedstock Genetics and Development

William F. Anderson; Gautam Sarath; Serge J. Edmé; Michael D. Casler; Robert B. Mitchell; Christian M. Tobias; A. L. Hale; Scott E. Sattler; Joseph E. Knoll

Biofuels and bio-based products can be produced from a wide variety of herbaceous feedstocks. To supply enough biomass to meet the needs of a new bio-based economy, a suite of dedicated biomass species must be developed to accommodate a range of growing environments throughout the USA. Researchers from the US Department of Agriculture’s Agricultural Research Service (USDA-ARS) and collaborators associated with the USDA Regional Biomass Research Centers have made major progress in understanding the genetics of switchgrass, sorghum, and other grass species and have begun to use this knowledge to develop new cultivars with high yields and appropriate traits for efficient conversion to bio-based products. Plant geneticists and breeders have discovered genes that reduce recalcitrance for biochemical conversion to ethanol and drop-in fuels. Progress has also been made in finding genes that improve production under biotic and abiotic stress from diseases, pests, and climatic variations.

Collaboration


Dive into the Gautam Sarath's collaboration.

Top Co-Authors

Avatar

Christian M. Tobias

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Nathan A. Palmer

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Paul Twigg

University of Nebraska at Kearney

View shared research outputs
Top Co-Authors

Avatar

Teresa Donze-Reiner

West Chester University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Tiffany Heng-Moss

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Aaron J. Saathoff

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Keenan Amundsen

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Kenneth P. Vogel

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Robert B. Mitchell

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Scott E. Sattler

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge