Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian P. Ceresa is active.

Publication


Featured researches published by Brian P. Ceresa.


Cancer Research | 2014

Targeted Noninvasive Imaging of EGFR-Expressing Orthotopic Pancreatic Cancer Using Multispectral Optoacoustic Tomography

Shanice V. Hudson; Justin S. Huang; Wenyuan Yin; Sabrin Albeituni; Jamie S. Rush; Anil Khanal; Jun Yan; Brian P. Ceresa; Hermann B. Frieboes; Lacey R. McNally

Detection of orthotopic xenograft tumors is difficult due to poor spatial resolution and reduced image fidelity with traditional optical imaging modalities. In particular, light scattering and attenuation in tissue at depths beyond subcutaneous implantation hinder adequate visualization. We evaluate the use of multispectral optoacoustic tomography (MSOT) to detect upregulated epidermal growth factor (EGF) receptor in orthotopic pancreatic xenografts using a near-infrared EGF-conjugated CF-750 fluorescent probe. MSOT is based on the photoacoustic effect and thus not limited by photon scattering, resulting in high-resolution tomographic images. Pancreatic tumor-bearing mice with luciferase-transduced S2VP10L tumors were intravenously injected with EGF-750 probe before MSOT imaging. We characterized probe specificity and bioactivity via immunoblotting, immunocytochemistry, and flow cytometric analysis. In vitro data along with optical bioluminescence/fluorescence imaging were used to validate acquired MSOT in vivo images of probe biodistribution. Indocyanine green dye was used as a nonspecific control to define specificity of EGF-probe accumulation. Maximum accumulation occurred at 6 hours postinjection, demonstrating specific intratumoral probe uptake and minimal liver and kidney off-target accumulation. Optical bioluminescence and fluorescence imaging confirmed tumor-specific probe accumulation consistent with MSOT images. These studies demonstrate the utility of MSOT to obtain volumetric images of ligand probe biodistribution in vivo to detect orthotopic pancreatic tumor lesions through active targeting of the EGF receptor.


International Review of Cell and Molecular Biology | 2014

Cell and molecular biology of epidermal growth factor receptor.

Brian P. Ceresa; Joanne L. Peterson

The epidermal growth factor receptor (EGFR) has been one of the most intensely studied cell surface receptors due to its well-established roles in developmental biology, tissue homeostasis, and cancer biology. The EGFR has been critical for creating paradigms for numerous aspects of cell biology, such as ligand binding, signal transduction, and membrane trafficking. Despite this history of discovery, there is a continual stream of evidence that only the surface has been scratched. New ways of receptor regulation continue to be identified, each of which is a potential molecular target for manipulating EGFR signaling and the resultant changes in cell and tissue biology. This chapter is an update on EGFR-mediated signaling, and describes some recent developments in the regulation of receptor biology.


International Journal of Molecular Sciences | 2012

Spatial Regulation of Epidermal Growth Factor Receptor Signaling by Endocytosis

Brian P. Ceresa

Signaling by cell surface receptors appears to be relatively straight-forward: ligand binds to the extracellular domain of the receptor and biochemical changes are communicated into the cell. However, this process is more complex than it first seems due to the various mechanisms that regulate signaling. In order to effectively target these receptors for pharmacological purposes, a more complete understanding of how their signaling is regulated is needed. Here, how the endocytic pathway regulates receptor signaling is discussed, using the epidermal growth factor receptor (EGFR) as a model. In particular, the spatial regulation of signaling is examined. Areas of discussion include: how endocytic trafficking affects biology/pathology, varying approaches for studying the relationship between receptor endocytosis and signaling, and developments in how the endocytic pathway controls EGFR:effector communication and EGFR-mediated cell biology.


Molecular and Cellular Endocrinology | 2013

RAB7 and TSG101 are required for the constitutive recycling of unliganded EGFRs via distinct mechanisms.

Jamie S. Rush; Brian P. Ceresa

Both constitutive and ligand-mediated membrane trafficking regulate Epidermal Growth Factor Receptor (EGFR) signaling. The constitutive endocytosis and recycling of the unliganded EGFR is a critical determinant of cell surface EGFR expression and the cells sensitivity to ligands. We report that two proteins with established roles in trafficking the EGF:EGFR complex to the lysosome also regulate the recycling of the unliganded EGFR. Knock down of either Tumor suppressor gene 101 (TSG101) or RAB7 causes the endosomal accumulation of the inactive, unliganded receptor in morphologically and biochemically distinct organelles. Knock down of TSG101 causes the EGFR to accumulate in low density endosomes whereas RAB7 knock down results in EGFR accumulation in high density endosomes. Knock down of either protein caused the receptor to co-localize primarily with LAMP-1, but not EEA1. These two proteins regulate EGFR slow, perinuclear recycling, via distinct mechanism and are new molecular targets that regulate cell surface EGFR expression.


Investigative Ophthalmology & Visual Science | 2014

The Role of Endogenous Epidermal Growth Factor Receptor Ligands in Mediating Corneal Epithelial Homeostasis

Joanne L. Peterson; Eric D. Phelps; Mark A. Doll; Shlomit Schaal; Brian P. Ceresa

PURPOSEnTo provide a comprehensive study of the biological role and therapeutic potential of six endogenous epidermal growth factor receptor (EGFR) ligands in corneal epithelial homeostasis.nnnMETHODSnKinetic analysis and dose response curves were performed by using in vitro and in vivo wound-healing assays. Biochemical assays were used to determine receptor expression and activity. Human tears were collected and quantitatively analyzed by multianalyte profiling for endogenous EGFR ligands.nnnRESULTSnEpidermal growth factor receptor ligands improved wound closure and activated EGFR, but betacellulin (BTC) was the most efficacious promoter of wound healing in vitro. In contrast, only epidermal growth factor (EGF) promoted wound healing in vivo. Human tears from 25 healthy individuals showed EGFR ligands at these average concentrations: EGF at 2053 ± 312.4 pg/mL, BTC at 207 ± 39.4 pg/mL, heparin-binding EGF at 44 ± 5.8 pg/mL, amphiregulin at 509 ± 28.8 pg/mL, transforming growth factor-α at 84 ± 19 pg/mL, and epiregulin at 52 ± 15 pg/mL.nnnCONCLUSIONSnUnder unwounded conditions, only EGF was present at concentrations near the ligands Kd for the receptor, indicating it is the primary mediator of corneal epithelial homeostasis. Other ligands were present but at concentrations 11- to 7500-fold less their Kd, preventing significant ligand binding. Further, the high levels of EGF and its predicted binding preclude receptor occupancy by exogenous ligand and can explain the discrepancy between the in vitro and in vivo data. Therefore, therapeutic use of EGFR ligands may be unpredictable and impractical.


Xenobiotica | 2017

Polychlorinated biphenyls disrupt hepatic epidermal growth factor receptor signaling

Josiah E. Hardesty; Banrida Wahlang; K. Cameron Falkner; Heather Clair; Barbara J. Clark; Brian P. Ceresa; Russell A. Prough; Matthew C. Cave

Abstract 1.u2002Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that disrupt hepatic xenobiotic and intermediary metabolism, leading to metabolic syndrome and nonalcoholic steatohepatitis (NASH). 2.u2002Since phenobarbital indirectly activates Constitutive Androstane Receptor (CAR) by antagonizing growth factor binding to the epidermal growth factor receptor (EGFR), we hypothesized that PCBs may also diminish EGFR signaling. 3.u2002The effects of the PCB mixture Aroclor 1260 on the protein phosphorylation cascade triggered by EGFR activation were determined in murine (in vitro and in vivo) and human models (in vitro). EGFR tyrosine residue phosphorylation was decreased by PCBs in all models tested. 4.u2002The IC50 values for Aroclor 1260 concentrations that decreased Y1173 phosphorylation of EGFR were similar in murine AML-12 and human HepG2 cells (∼2–4u2009μg/mL). Both dioxin and non-dioxin-like PCB congeners decreased EGFR phosphorylation in cell culture. 5.u2002PCB treatment reduced phosphorylation of downstream EGFR effectors including Akt and mTOR, as well as other phosphoprotein targets including STAT3 and c-RAF in vivo. 6.u2002PCBs diminish EGFR signaling in human and murine hepatocyte models and may dysregulate critical phosphoprotein regulators of energy metabolism and nutrition, providing a new mechanism of action in environmental diseases.


Experimental Cell Research | 2016

Protein Kinase G facilitates EGFR-mediated cell death in MDA-MB-468 cells

Nicole M. Jackson; Brian P. Ceresa

The Epidermal Growth Factor Receptor (EGFR) is a transmembrane receptor tyrosine kinase with critical implications in cell proliferation, migration, wound healing and the regulation of apoptosis. However, the EGFR has been shown to be hyper-expressed in a number of human malignancies. The MDA-MB-468 metastatic breast cell line is one example of this. This particular cell line hyper-expresses the EGFR and undergoes EGFR-mediated apoptosis in response to EGF ligand. The goal of this study was to identify the kinases that could be potential intermediates for the EGFR-mediated induction of apoptosis intracellularly. After identifying Cyclic GMP-dependent Protein Kinase G (PKG) as a plausible intermediate, we wanted to determine the temporal relationship of these two proteins in the induction of apoptosis. We observed a dose-dependent decrease in MDA-MB-468 cell viability, which was co-incident with increased PKG activity as measured by VASPSer239 phosphorylation. In addition, we observed a dose dependent decrease in cell viability, as well as an increase in apoptosis, in response to two different PKG agonists, 8-Bromo-cGMP and 8-pCPT-cGMP. MDA-MB-468 cells with reduced PKG activity had attenuated EGFR-mediated apoptosis. These findings indicate that PKG does not induce cell death via transphosphorylation of the EGFR. Instead, PKG activity occurs following EGFR activation. Together, these data indicate PKG as an intermediary in EGFR-mediated cell death, likely via apoptotic pathway.


Investigative Ophthalmology & Visual Science | 2014

Antagonizing c-Cbl enhances EGFR-dependent corneal epithelial homeostasis.

Jamie S. Rush; Michael A. Boeving; William L. Berry; Brian P. Ceresa

PURPOSEnIn many cell types, the E3 ubiquitin ligase, c-Cbl, induces ligand-dependent ubiquitylation of the epidermal growth factor receptor (EGFR) and targets the receptor for lysosomal degradation. The goal of this study was to determine whether c-Cbl is a negative regulator of EGFR in the corneal epithelium and if it can be inhibited to promote corneal epithelial homeostasis.nnnMETHODSnExpression and activity of c-Cbl were blocked in immortalized human corneal epithelial cells (hTCEpi) using RNAi and pharmacological agents ([4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo-d-3,4-pyrimidine] or PP1). Following c-Cbl inhibition, cells were assessed for ligand-dependent receptor ubiquitylation, receptor phosphorylation, and in vitro wound healing. Subsequent experiments used PP1 in hTCEpi cells and monitored in vivo murine corneal epithelial wound healing.nnnRESULTSnKnockdown and inhibition of c-Cbl decreased ligand-dependent ubiquitylation of the EGFR and prolonged receptor activity as measured by tyrosine phosphorylation. Further, these treatments also increased the extent of ligand-dependent corneal epithelial wound healing in vitro and in vivo.nnnCONCLUSIONnManipulating the duration of EGFR activity can enhance the rate of restoration of the corneal epithelial layer. Based on our findings, c-Cbl is a new therapeutic target to enhance EGFR-mediated corneal epithelial homeostasis that bypasses the limitations of previous approaches.


Toxicological Sciences | 2018

Epidermal Growth Factor Receptor Signaling Disruption by Endocrine and Metabolic Disrupting Chemicals

Josiah E. Hardesty; Laila Al-Eryani; Banrida Wahlang; K. Cameron Falkner; Hongxue Shi; Jian Jin; Brad J Vivace; Brian P. Ceresa; Russell A. Prough; Matthew C. Cave

The purpose of this study is to identify an environmentally relevant shared receptor target for endocrine and metabolism disrupting chemical pollutants. A feature of the tested chemicals was that they induced Cyp2b10 in vivo implicating activation of the constitutive androstane receptor (CAR). Recent studies suggest that these compounds could be indirect CAR activators via epidermal growth factor receptor (EGFR) inhibition. Assays included a CAR activity reporter assay, EGF endocytosis assay, and EGFR phosphorylation assay. Docking simulations were used to identify putative binding sites for environmental chemicals on the EGFR. Whole-weight and lipid-adjusted serum mean pollutant exposures were determined using data from the National Health and Examination Survey (NHANES) and compared with the IC50 values determined in vitro. Chlordane, trans-nonachlor, PCB-126, PCB-153, and atrazine were the most potent EGFR inhibitors tested. PCB-126, PCB-153, and trans-nonachlor appeared to be competitive EGFR antagonists as they displaced bound EGF from EGFR. However, atrazine acted through a different mechanism and could be an EGFR tyrosine kinase inhibitor. EGFR inhibition relative effect potencies were determined for these compounds. In NHANES, serum concentrations of trans-nonachlor, PCB-126, and PCB-153 greatly exceeded their calculated IC50 values. A common mechanism of action through EGFR inhibition for three diverse classes of metabolic disrupting chemicals was characterized by measuring inhibition of EGFR phosphorylation and EGF-EGFR endocytosis. Based on NHANES data, EGFR inhibition may be an environmentally relevant mode of action for some PCBs, pesticides, and herbicides.


Journal of Biological Chemistry | 2014

Cell Surface Epidermal Growth Factor Receptors Increase Src and c-Cbl Activity and Receptor Ubiquitylation

Eileen E. Parks; Brian P. Ceresa

Background: The endocytic pathway spatially regulates EGFR signaling. Results: Activated, cell surface, EGFRs stimulate Src and c-Cbl better than intracellular receptors and increase receptor ubiquitylation. Conclusion: Sustained signaling from the plasma membrane enhances receptor ubiquitylation, a key component of EGFR down-regulation. Significance: Cell surface EGFRs signal key regulatory mechanisms for receptor degradation. There is an established role for the endocytic pathway in regulation of epidermal growth factor receptor (EGFR) signaling to downstream effectors. However, because ligand-mediated EGFR endocytosis utilizes multiple “moving parts,” dissecting the spatial versus temporal contributions has been challenging. Blocking all endocytic trafficking can have unintended effects on other receptors as well as give rise to compensatory mechanisms, both of which impact interpretation of EGFR signaling. To overcome these limitations, we used epidermal growth factor (EGF) conjugated to polystyrene beads (EGF beads). EGF beads simultaneously activate the EGFR while blocking its endocytosis and allow analysis of EGFR signaling from the plasma membrane. Human telomerase immortalized corneal epithelial (hTCEpi) cells were used to model normal epithelial cell biology. In hTCEpi cells, both cell surface and intracellular EGFRs exhibited dose-dependent increases in effector activity after 15 min of ligand stimulation, but only the serine phosphorylation of signal transducer and activator of transcription 3 (STAT3) was statistically significant when accounting for receptor phosphorylation. However, over time with physiological levels of receptor phosphorylation, cell surface receptors produced either enhanced or sustained mitogen-activated protein kinase kinase (MEK), Casitas B-lineage lymphoma (c-Cbl), and the pro-oncogene Src activity. These increases in effector communication by cell surface receptors resulted in an increase in EGFR ubiquitylation with sustained ligand incubation. Together, these data indicate that spatial regulation of EGFR signaling may be an important regulatory mechanism in receptor down-regulation.

Collaboration


Dive into the Brian P. Ceresa's collaboration.

Top Co-Authors

Avatar

Jamie S. Rush

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anil Khanal

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge