Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hermann B. Frieboes is active.

Publication


Featured researches published by Hermann B. Frieboes.


Nonlinearity | 2010

Nonlinear modelling of cancer: bridging the gap between cells and tumours

John Lowengrub; Hermann B. Frieboes; Fang Jin; Yao-Li Chuang; Xiangrong Li; Paul Macklin; Steven M. Wise; Vittorio Cristini

Despite major scientific, medical and technological advances over the last few decades, a cure for cancer remains elusive. The disease initiation is complex, and including initiation and avascular growth, onset of hypoxia and acidosis due to accumulation of cells beyond normal physiological conditions, inducement of angiogenesis from the surrounding vasculature, tumour vascularization and further growth, and invasion of surrounding tissue and metastasis. Although the focus historically has been to study these events through experimental and clinical observations, mathematical modelling and simulation that enable analysis at multiple time and spatial scales have also complemented these efforts. Here, we provide an overview of this multiscale modelling focusing on the growth phase of tumours and bypassing the initial stage of tumourigenesis. While we briefly review discrete modelling, our focus is on the continuum approach. We limit the scope further by considering models of tumour progression that do not distinguish tumour cells by their age. We also do not consider immune system interactions nor do we describe models of therapy. We do discuss hybrid-modelling frameworks, where the tumour tissue is modelled using both discrete (cell-scale) and continuum (tumour-scale) elements, thus connecting the micrometre to the centimetre tumour scale. We review recent examples that incorporate experimental data into model parameters. We show that recent mathematical modelling predicts that transport limitations of cell nutrients, oxygen and growth factors may result in cell death that leads to morphological instability, providing a mechanism for invasion via tumour fingering and fragmentation. These conditions induce selection pressure for cell survivability, and may lead to additional genetic mutations. Mathematical modelling further shows that parameters that control the tumour mass shape also control its ability to invade. Thus, tumour morphology may serve as a predictor of invasiveness and treatment prognosis.


Journal of Theoretical Biology | 2008

Three-dimensional multispecies nonlinear tumor growth ¯I Model and numerical method

Steven M. Wise; John Lowengrub; Hermann B. Frieboes; Vittorio Cristini

This is the first paper in a two-part series in which we develop, analyze, and simulate a diffuse interface continuum model of multispecies tumor growth and tumor-induced angiogenesis in two and three dimensions. Three-dimensional simulations of nonlinear tumor growth and neovascularization using this diffuse interface model were recently presented in Frieboes et al. [2007. Computer simulation of glioma growth and morphology. NeuroImage S59-S70], but that paper did not describe the details of the model or the numerical algorithm. This is done here. In this diffuse interface approach, sharp interfaces are replaced by narrow transition layers that arise due to differential adhesive forces among the cell species. Accordingly, a continuum model of adhesion is introduced. The model is thermodynamically consistent, is related to recently developed mixture models, and thus is capable of providing a detailed description of tumor progression. The model is well-posed and consists of fourth-order nonlinear advection-reaction-diffusion equations (of Cahn-Hilliard-type) for the cell species coupled with reaction-diffusion equations for the substrate components. We demonstrate analytically and numerically that when the diffuse interface thickness tends to zero, the system reduces to a classical sharp interface model. Using a new fully adaptive and nonlinear multigrid/finite difference method, the system is simulated efficiently. In this first paper, we present simulations of unstable avascular tumor growth in two and three dimensions and demonstrate that our techniques now make large-scale three-dimensional simulations of tumors with complex morphologies computationally feasible. In part II of this study, we will investigate multispecies tumor invasion, tumor-induced angiogenesis, and focus on the morphological instabilities that may underlie invasive phenotypes.


Cancer Research | 2006

An integrated computational/experimental model of tumor invasion

Hermann B. Frieboes; Xiaoming Zheng; Chung Ho Sun; Bruce J. Tromberg; Robert A. Gatenby; Vittorio Cristini

The intracellular and extracellular dynamics that govern tumor growth and invasiveness in vivo remain poorly understood. Cell genotype and phenotype, and nutrient, oxygen, and growth factor concentrations are key variables. In previous work, using a reaction-diffusion mathematical model based on variables that directly describe tumor cell cycle and biology, we formulated the hypothesis that tumor morphology is determined by the competition between heterogeneous cell proliferation caused by spatial diffusion gradients, e.g., of cell nutrients, driving shape instability and invasive tumor morphologies, and stabilizing mechanical forces, e.g., cell-to-cell and cell-to-matrix adhesion. To test this hypothesis, we here obtain variable-based statistics for input to the mathematical model from in vitro human and rat glioblastoma cultures. A linear stability analysis of the model predicts that glioma spheroid morphology is marginally stable. In agreement with this prediction, for a range of variable values, unbounded growth of the tumor mass and invasion of the environment are observed in vitro. The mechanism of invasion is recursive subspheroid component development at the tumor viable rim and separation from the parent spheroid. Results of computer simulations of the mathematical model closely resemble the morphologies and spatial arrangement of tumor cells from the in vitro model. We propose that tumor morphogenesis in vivo may be a function of marginally stable environmental conditions caused by spatial variations in cell nutrients, oxygen, and growth factors, and that controlling these conditions by decreasing spatial gradients could benefit treatment outcomes, whereas current treatment, and especially antiangiogenic therapy, may trigger spatial heterogeneity (e.g., local hypoxia), thus causing invasive instability.


NeuroImage | 2007

Computer simulation of glioma growth and morphology.

Hermann B. Frieboes; John Lowengrub; Steven M. Wise; Xiaoming Zheng; Paul Macklin; Elaine L. Bearer; Vittorio Cristini

Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/cellular properties, clinically observable properties such as morphology, and critical tumor behaviors such as growth and invasiveness remain unclear, hampering more effective coupling of tumor physical characteristics with implications for prognosis and therapy. Although molecular biology, histopathology, and radiological imaging are employed in this endeavor, studies are severely challenged by the multitude of different physical scales involved in tumor growth, i.e., from molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often difficult to determine the underlying dynamics across dimensions. New techniques are needed to tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-dimensional mathematical and computational model based on first-principle equations (conservation laws of physics) that describe mathematically the diffusion of cell substrates and other processes determining tumor mass growth and invasion. The model uses conserved variables to represent known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as biological functional relationships and parameters linking phenomena at different scales whose specific forms and values are hypothesized and calculated based on in vitro and in vivo experiments and from histopathology of tissue specimens from human gliomas. This model enables correlation of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and apoptosis rates, cell adhesion strength). Once functional relationships between variables and associated parameter values have been informed, e.g., from histopathology or intra-operative analysis, this model can be used for disease diagnosis/prognosis, hypothesis testing, and to guide surgery and therapy. In particular, this tool identifies and quantifies the effects of vascularization and other cell-scale glioma morphological characteristics as predictors of tumor-scale growth and invasion.


Clinical Cancer Research | 2005

Morphologic Instability and Cancer Invasion

Vittorio Cristini; Hermann B. Frieboes; Robert A. Gatenby; Mauro Ferrari; John P. Sinek

Purpose: A solid tumor embedded in host tissue is a three-dimensional arrangement of cells and extracellular matrix that acts as a sink of oxygen and cell nutrients, thus establishing diffusional gradients. This and variations in vascular density and blood flow typically produce intratumoral regions of hypoxia and acidosis, and may result in spatially heterogeneous cell proliferation and migration. Here, we formulate the hypothesis that through these mechanisms, microenvironmental substrate gradients may drive morphologic instability with separation of cell clusters from the tumor edge and infiltration into surrounding normal tissue. Experimental Design: We used computer simulations and in vitro experiments. Results: We provide evidence that morphologic instability could be suppressed in vivo by spatially homogeneous oxygen and nutrient supply because normoxic conditions act both by decreasing gradients and increasing cell adhesion and, therefore, the mechanical forces that maintain a well-defined tumor boundary. A properly working tumor microvasculature can help maintain compact noninfiltrating tumor morphologies by minimizing oxygen and nutrient gradients. In contrast, antiangiogenic therapy, by increasing microenvironmental heterogeneity, may promote morphologic instability, leading to invasive patterns even under conditions in which the overall tumor mass shrinks. Conclusions: We conclude that therapeutic strategies focused solely on reduction of vascular density may paradoxically increase invasive behavior. This theoretical model accounts for the highly variable outcome of antiangiogenic therapy in multiple clinical trials. We propose that antiangiogenic strategies will be more consistently successful when aimed at “normalizing” the vasculature and when combined with therapies that increase cell adhesion so that morphologic instability is suppressed and compact, noninvasive tumor morphologies are enforced.


Journal of Theoretical Biology | 2010

Three-dimensional multispecies nonlinear tumor growth—II: Tumor invasion and angiogenesis

Hermann B. Frieboes; Fang Jin; Yao-Li Chuang; Steven M. Wise; John Lowengrub; Vittorio Cristini

We extend the diffuse interface model developed in Wise et al. (2008) to study nonlinear tumor growth in 3-D. Extensions include the tracking of multiple viable cell species populations through a continuum diffuse-interface method, onset and aging of discrete tumor vessels through angiogenesis, and incorporation of individual cell movement using a hybrid continuum-discrete approach. We investigate disease progression as a function of cellular-scale parameters such as proliferation and oxygen/nutrient uptake rates. We find that heterogeneity in the physiologically complex tumor microenvironment, caused by non-uniform distribution of oxygen, cell nutrients, and metabolites, as well as phenotypic changes affecting cellular-scale parameters, can be quantitatively linked to the tumor macro-scale as a mechanism that promotes morphological instability. This instability leads to invasion through tumor infiltration of surrounding healthy tissue. Models that employ a biologically founded, multiscale approach, as illustrated in this work, could help to quantitatively link the critical effect of heterogeneity in the tumor microenvironment with clinically observed tumor growth and invasion. Using patient tumor-specific parameter values, this may provide a predictive tool to characterize the complex in vivo tumor physiological characteristics and clinical response, and thus lead to improved treatment modalities and prognosis.


NeuroImage | 2007

Predictive oncology: a review of multidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth.

Sandeep Sanga; Hermann B. Frieboes; Xiaoming Zheng; Robert A. Gatenby; Elaine L. Bearer; Vittorio Cristini

Empirical evidence and theoretical studies suggest that the phenotype, i.e., cellular- and molecular-scale dynamics, including proliferation rate and adhesiveness due to microenvironmental factors and gene expression that govern tumor growth and invasiveness, also determine gross tumor-scale morphology. It has been difficult to quantify the relative effect of these links on disease progression and prognosis using conventional clinical and experimental methods and observables. As a result, successful individualized treatment of highly malignant and invasive cancers, such as glioblastoma, via surgical resection and chemotherapy cannot be offered and outcomes are generally poor. What is needed is a deterministic, quantifiable method to enable understanding of the connections between phenotype and tumor morphology. Here, we critically assess advantages and disadvantages of recent computational modeling efforts (e.g., continuum, discrete, and cellular automata models) that have pursued this understanding. Based on this assessment, we review a multiscale, i.e., from the molecular to the gross tumor scale, mathematical and computational first-principle approach based on mass conservation and other physical laws, such as employed in reaction-diffusion systems. Model variables describe known characteristics of tumor behavior, and parameters and functional relationships across scales are informed from in vitro, in vivo and ex vivo biology. We review the feasibility of this methodology that, once coupled to tumor imaging and tumor biopsy or cell culture data, should enable prediction of tumor growth and therapy outcome through quantification of the relation between the underlying dynamics and morphological characteristics. In particular, morphologic stability analysis of this mathematical model reveals that tumor cell patterning at the tumor-host interface is regulated by cell proliferation, adhesion and other phenotypic characteristics: histopathology information of tumor boundary can be inputted to the mathematical model and used as a phenotype-diagnostic tool to predict collective and individual tumor cell invasion of surrounding tissue. This approach further provides a means to deterministically test effects of novel and hypothetical therapy strategies on tumor behavior.


Cancer Research | 2009

Prediction of drug response in breast cancer using integrative experimental/computational modeling

Hermann B. Frieboes; Mary E. Edgerton; John P. Fruehauf; Felicity R.A.J. Rose; Lisa K. Worrall; Robert A. Gatenby; Mauro Ferrari; Vittorio Cristini

Nearly 30% of women with early-stage breast cancer develop recurrent disease attributed to resistance to systemic therapy. Prevailing models of chemotherapy failure describe three resistant phenotypes: cells with alterations in transmembrane drug transport, increased detoxification and repair pathways, and alterations leading to failure of apoptosis. Proliferative activity correlates with tumor sensitivity. Cell-cycle status, controlling proliferation, depends on local concentration of oxygen and nutrients. Although physiologic resistance due to diffusion gradients of these substances and drugs is a recognized phenomenon, it has been difficult to quantify its role with any accuracy that can be exploited clinically. We implement a mathematical model of tumor drug response that hypothesizes specific functional relationships linking tumor growth and regression to the underlying phenotype. The model incorporates the effects of local drug, oxygen, and nutrient concentrations within the three-dimensional tumor volume, and includes the experimentally observed resistant phenotypes of individual cells. We conclude that this integrative method, tightly coupling computational modeling with biological data, enhances the value of knowledge gained from current pharmacokinetic measurements, and, further, that such an approach could predict resistance based on specific tumor properties and thus improve treatment outcome.


Expert Review of Anticancer Therapy | 2006

Mathematical modeling of cancer progression and response to chemotherapy

Sandeep Sanga; John P. Sinek; Hermann B. Frieboes; Mauro Ferrari; John P. Fruehauf; Vittorio Cristini

The complex, constantly evolving and multifaceted nature of cancer has made it difficult to identify unique molecular and pathophysiological signatures for each disease variant, consequently hindering development of effective therapies. Mathematical modeling and computer simulation are tools that can provide a robust framework to better understand cancer progression and response to chemotherapy. Successful therapeutic agents must overcome biological barriers occurring at multiple space and time scales and still reach targets at sufficient concentrations. A multiscale computer simulator founded on the integration of experimental data and mathematical models can provide valuable insights into these processes and establish a technology platform for analyzing the effectiveness of chemotherapeutic drugs, with the potential to cost-effectively and efficiently screen drug candidates during the drug-development process.


Cancer Research | 2009

Multiparameter Computational Modeling of Tumor Invasion

Elaine L. Bearer; John Lowengrub; Hermann B. Frieboes; Yao Li Chuang; Fang Jin; Steven M. Wise; Mauro Ferrari; David B. Agus; Vittorio Cristini

Clinical outcome prognostication in oncology is a guiding principle in therapeutic choice. A wealth of qualitative empirical evidence links disease progression with tumor morphology, histopathology, invasion, and associated molecular phenomena. However, the quantitative contribution of each of the known parameters in this progression remains elusive. Mathematical modeling can provide the capability to quantify the connection between variables governing growth, prognosis, and treatment outcome. By quantifying the link between the tumor boundary morphology and the invasive phenotype, this work provides a quantitative tool for the study of tumor progression and diagnostic/prognostic applications. This establishes a framework for monitoring system perturbation towards development of therapeutic strategies and correlation to clinical outcome for prognosis.

Collaboration


Dive into the Hermann B. Frieboes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Lowengrub

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. Sinek

University of California

View shared research outputs
Top Co-Authors

Avatar

Xiaoming Zheng

University of California

View shared research outputs
Top Co-Authors

Avatar

Mauro Ferrari

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandeep Sanga

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Fang Jin

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge