Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian P. Dranka is active.

Publication


Featured researches published by Brian P. Dranka.


Journal of Biological Chemistry | 2010

What Part of NO Don't You Understand? Some Answers to the Cardinal Questions in Nitric Oxide Biology

Bradford G. Hill; Brian P. Dranka; Shannon M. Bailey; Jack R. Lancaster; Victor M. Darley-Usmar

Nitric oxide (NO) regulates biological processes through signaling mechanisms that exploit its unique biochemical properties as a free radical. For the last several decades, the key aspects of the chemical properties of NO relevant to biological systems have been defined, but it has been a challenge to assign these to specific cellular processes. Nevertheless, it is now clear that the high affinity of NO for transition metal centers, particularly iron, and the rapid reaction of NO with oxygen-derived free radicals can explain many of its biological and pathological properties. Emerging studies also highlight a growing importance of the secondary metabolites of NO-dependent reactions in the post-translational modification of key metabolic and signaling proteins. In this minireview, we emphasize the current understanding of the biochemistry of NO and place it in a biological context.


Free Radical Biology and Medicine | 2010

Mitochondrial reserve capacity in endothelial cells: The impact of nitric oxide and reactive oxygen species

Brian P. Dranka; Bradford G. Hill; Victor M. Darley-Usmar

The endothelium is not considered to be a major energy-requiring organ, but nevertheless endothelial cells have an extensive mitochondrial network. This suggests that mitochondrial function may be important in response to stress and signaling in these cells. In this study, we used extracellular flux analysis to measure mitochondrial function in adherent bovine aortic endothelial cells (BAEC). Under basal conditions, BAEC use only approximately 35% of their maximal respiratory capacity. We calculate that this represents an intermediate respiratory state between States 3 and 4, which we define as State(apparent) equal to 3.64. Interestingly, the apparent respiratory control ratio (maximal mitochondrial oxygen consumption/non-ADP-linked respiration) in these cells is on the order of 23, which is substantially higher than that which is frequently obtained with isolated mitochondria. These results suggest that mitochondria in endothelial cells are highly coupled and possess a considerable bioenergetic reserve. Because endothelial cells are exposed to both reactive oxygen (ROS) and reactive nitrogen species in the course of vascular disease, we hypothesized that this reserve capacity is important in responding to oxidative stress. To test this, we exposed BAEC to NO or ROS alone or in combination. We found that exposure to nontoxic concentrations of NO or low levels of hydrogen peroxide generated from 2,3-dimethoxy-1,4-napthoquinone (DMNQ) had little impact on basal mitochondrial function but both treatments reversibly decreased mitochondrial reserve capacity. However, combined NO and DMNQ treatment resulted in an irreversible loss of reserve capacity and was associated with cell death. These data are consistent with a critical role for the mitochondrial reserve capacity in endothelial cells in responding to oxidative stress.


Free Radical Biology and Medicine | 2011

Assessing bioenergetic function in response to oxidative stress by metabolic profiling

Brian P. Dranka; Gloria A. Benavides; Anne R. Diers; Samantha Giordano; Blake R. Zelickson; Colin Reily; Luyun Zou; John C. Chatham; Bradford G. Hill; Jianhua Zhang; Aimee Landar; Victor M. Darley-Usmar

It is now clear that mitochondria are an important target for oxidative stress in a broad range of pathologies, including cardiovascular disease, diabetes, neurodegeneration, and cancer. Methods for assessing the impact of reactive species on isolated mitochondria are well established but constrained by the need for large amounts of material to prepare intact mitochondria for polarographic measurements. With the availability of high-resolution polarography and fluorescence techniques for the measurement of oxygen concentration in solution, measurements of mitochondrial function in intact cells can be made. Recently, the development of extracellular flux methods to monitor changes in oxygen concentration and pH in cultures of adherent cells in multiple-sample wells simultaneously has greatly enhanced the ability to measure bioenergetic function in response to oxidative stress. Here we describe these methods in detail using representative cell types from renal, cardiovascular, nervous, and tumorigenic model systems while illustrating the application of three protocols to analyze the bioenergetic response of cells to oxidative stress.


Cancer Research | 2012

Mitochondria targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death

Gang Cheng; Jacek Zielonka; Brian P. Dranka; Donna McAllister; Alexander C. Mackinnon; Joy Joseph; B. Kalyanaraman

Cancer cells are long known to exhibit increased aerobic glycolysis, but glycolytic inhibition has not offered a viable chemotherapeutic strategy in part because of the systemic toxicity of antiglycolytic agents. However, recent studies suggest that a combined inhibition of glycolysis and mitochondrial function may help overcome this issue. In this study, we investigated the chemotherapeutic efficacies of mitochondria-targeted drugs (MTD) in combination with 2-deoxy-d-glucose (2-DG), a compound that inhibits glycolysis. Using the MTDs, termed Mito-CP and Mito-Q, we evaluated relative cytotoxic effects and mitochondrial bioenergetic changes in vitro. Interestingly, both Mito-CP and Mito-Q synergized with 2-DG to decrease ATP levels in two cell lines. However, with time, the cellular bioenergetic function and clonogenic survival were largely restored in some cells. In a xenograft model of human breast cancer, combined treatment of Mito-CP and 2-DG led to significant tumor regression in the absence of significant morphologic changes in kidney, liver, or heart. Collectively, our findings suggest that dual targeting of mitochondrial bioenergetic metabolism with MTDs and glycolytic inhibitors such as 2-DG may offer a promising chemotherapeutic strategy.


Nature | 2016

Reductive carboxylation supports redox homeostasis during anchorage-independent growth

Lei Jiang; Alexander A. Shestov; Pamela Swain; Chendong Yang; Seth J. Parker; Qiong A. Wang; Lance S. Terada; Nicholas D. Adams; Michael T. McCabe; Beth Pietrak; Stan Schmidt; Christian M. Metallo; Brian P. Dranka; Benjamin Schwartz; Ralph J. DeBerardinis

Cells receive growth and survival stimuli through their attachment to an extracellular matrix (ECM). Overcoming the addiction to ECM-induced signals is required for anchorage-independent growth, a property of most malignant cells. Detachment from ECM is associated with enhanced production of reactive oxygen species (ROS) owing to altered glucose metabolism. Here we identify an unconventional pathway that supports redox homeostasis and growth during adaptation to anchorage independence. We observed that detachment from monolayer culture and growth as anchorage-independent tumour spheroids was accompanied by changes in both glucose and glutamine metabolism. Specifically, oxidation of both nutrients was suppressed in spheroids, whereas reductive formation of citrate from glutamine was enhanced. Reductive glutamine metabolism was highly dependent on cytosolic isocitrate dehydrogenase-1 (IDH1), because the activity was suppressed in cells homozygous null for IDH1 or treated with an IDH1 inhibitor. This activity occurred in absence of hypoxia, a well-known inducer of reductive metabolism. Rather, IDH1 mitigated mitochondrial ROS in spheroids, and suppressing IDH1 reduced spheroid growth through a mechanism requiring mitochondrial ROS. Isotope tracing revealed that in spheroids, isocitrate/citrate produced reductively in the cytosol could enter the mitochondria and participate in oxidative metabolism, including oxidation by IDH2. This generates NADPH in the mitochondria, enabling cells to mitigate mitochondrial ROS and maximize growth. Neither IDH1 nor IDH2 was necessary for monolayer growth, but deleting either one enhanced mitochondrial ROS and reduced spheroid size, as did deletion of the mitochondrial citrate transporter protein. Together, the data indicate that adaptation to anchorage independence requires a fundamental change in citrate metabolism, initiated by IDH1-dependent reductive carboxylation and culminating in suppression of mitochondrial ROS.


Journal of Biological Chemistry | 2012

Global Profiling of Reactive Oxygen and Nitrogen Species in Biological Systems HIGH-THROUGHPUT REAL-TIME ANALYSES

Jacek Zielonka; Monika Zielonka; Adam Sikora; Jan Adamus; Joy Joseph; Micael Hardy; Olivier Ouari; Brian P. Dranka; B. Kalyanaraman

Background: Recently, new “targeted” fluorescent probes that react selectively with reactive oxygen and nitrogen species to yield specific products have been discovered. Results: High-throughput fluorescence and HPLC-based methodology for global profiling of ROS/RNS is described. Conclusion: This methodology enables real-time monitoring of multiple oxidants in cellular systems. Significance: The global profiling approach using different ROS/RNS-specific fluorescent probes will help establish the identity of oxidants in redox regulation and signaling. Herein we describe a high-throughput fluorescence and HPLC-based methodology for global profiling of reactive oxygen and nitrogen species (ROS/RNS) in biological systems. The combined use of HPLC and fluorescence detection is key to successful implementation and validation of this methodology. Included here are methods to specifically detect and quantitate the products formed from interaction between the ROS/RNS species and the fluorogenic probes, as follows: superoxide using hydroethidine, peroxynitrite using boronate-based probes, nitric oxide-derived nitrosating species with 4,5-diaminofluorescein, and hydrogen peroxide and other oxidants using 10-acetyl-3,7-dihydroxyphenoxazine (Amplex® Red) with and without horseradish peroxidase, respectively. In this study, we demonstrate real-time monitoring of ROS/RNS in activated macrophages using high-throughput fluorescence and HPLC methods. This global profiling approach, simultaneous detection of multiple ROS/RNS products of fluorescent probes, developed in this study will be useful in unraveling the complex role of ROS/RNS in redox regulation, cell signaling, and cellular oxidative processes and in high-throughput screening of anti-inflammatory antioxidants.


Chemical Research in Toxicology | 2012

Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides

Jacek Zielonka; Adam Sikora; Micael Hardy; Joy Joseph; Brian P. Dranka; B. Kalyanaraman

Boronates, a group of organic compounds, are emerging as one of the most effective probes for detecting and quantifying peroxynitrite, hypochlorous acid, and hydrogen peroxide. Boronates react with peroxynitrite nearly a million times faster than with hydrogen peroxide. Boronate-containing fluorogenic compounds have been used to monitor real time generation of peroxynitrite in cells and for imaging hydrogen peroxide in living animals. This perspective highlights potential applications of boronates and other fluorescent probes to high-throughput analyses of peroxynitrite and hydroperoxides in toxicological studies.


Clinical Science | 2014

The Bioenergetic Health Index: a new concept in mitochondrial translational research.

Balu K. Chacko; Philip A. Kramer; Saranya Ravi; Gloria A. Benavides; Tanecia Mitchell; Brian P. Dranka; David A. Ferrick; Ashwani K. Singal; Scott W. Ballinger; Shannon M. Bailey; Robert W. Hardy; Jianhua Zhang; Degui Zhi; Victor M. Darley-Usmar

Bioenergetics has become central to our understanding of pathological mechanisms, the development of new therapeutic strategies and as a biomarker for disease progression in neurodegeneration, diabetes, cancer and cardiovascular disease. A key concept is that the mitochondrion can act as the ‘canary in the coal mine’ by serving as an early warning of bioenergetic crisis in patient populations. We propose that new clinical tests to monitor changes in bioenergetics in patient populations are needed to take advantage of the early and sensitive ability of bioenergetics to determine severity and progression in complex and multifactorial diseases. With the recent development of high-throughput assays to measure cellular energetic function in the small number of cells that can be isolated from human blood these clinical tests are now feasible. We have shown that the sequential addition of well-characterized inhibitors of oxidative phosphorylation allows a bioenergetic profile to be measured in cells isolated from normal or pathological samples. From these data we propose that a single value–the Bioenergetic Health Index (BHI)–can be calculated to represent the patients composite mitochondrial profile for a selected cell type. In the present Hypothesis paper, we discuss how BHI could serve as a dynamic index of bioenergetic health and how it can be measured in platelets and leucocytes. We propose that, ultimately, BHI has the potential to be a new biomarker for assessing patient health with both prognostic and diagnostic value.


Biochimica et Biophysica Acta | 2010

Regulation of vascular smooth muscle cell bioenergetic function by protein glutathiolation.

Bradford G. Hill; Ashlee N. Higdon; Brian P. Dranka; Victor M. Darley-Usmar

Protein thiolation by glutathione is a reversible and regulated post-translational modification that is increased in response to oxidants and nitric oxide. Because many mitochondrial enzymes contain critical thiol residues, it has been hypothesized that thiolation reactions regulate cell metabolism and survival. However, it has been difficult to differentiate the biological effects due to protein thiolation from other oxidative protein modifications. In this study, we used diamide to titrate protein glutathiolation and examined its impact on glycolysis, mitochondrial function, and cell death in rat aortic smooth muscle cells. Treatment of cells with diamide increased protein glutathiolation in a concentration-dependent manner and had comparably little effect on protein-protein disulfide formation. Diamide increased mitochondrial proton leak and decreased ATP-linked mitochondrial oxygen consumption and cellular bioenergetic reserve capacity. Concentrations of diamide above 200 microM promoted acute bioenergetic failure and caused cell death, whereas lower concentrations of diamide led to a prolonged increase in glycolytic flux and were not associated with loss of cell viability. Depletion of glutathione using buthionine sulfoximine had no effect on basal protein thiolation or cellular bioenergetics but decreased diamide-induced protein glutathiolation and sensitized the cells to bioenergetic dysfunction and death. The effects of diamide on cell metabolism and viability were fully reversible upon addition of dithiothreitol. These data suggest that protein thiolation modulates key metabolic processes in both the mitochondria and cytosol.


Biochemical Journal | 2010

Role of cellular bioenergetics in smooth muscle cell proliferation induced by platelet-derived growth factor.

Jessica Perez; Bradford G. Hill; Gloria A. Benavides; Brian P. Dranka; Victor M. Darley-Usmar

Abnormal smooth muscle cell proliferation is a hallmark of vascular disease. Although growth factors are known to contribute to cell hyperplasia, the changes in metabolism associated with this response, particularly mitochondrial respiration, remain unclear. Given the increased energy requirements for proliferation, we hypothesized that PDGF (platelet-derived growth factor) would stimulate glycolysis and mitochondrial respiration and that this elevated bioenergetic capacity is required for smooth muscle cell hyperplasia. To test this hypothesis, cell proliferation, glycolytic flux and mitochondrial oxygen consumption were measured after treatment of primary rat aortic VSMCs (vascular smooth muscle cells) with PDGF. PDGF increased basal and maximal rates of glycolytic flux and mitochondrial oxygen consumption; enhancement of these bioenergetic pathways led to a substantial increase in the mitochondrial reserve capacity. Interventions with the PI3K (phosphoinositide 3-kinase) inhibitor LY-294002 or the glycolysis inhibitor 2-deoxy-D-glucose abrogated PDGF-stimulated proliferation and prevented augmentation of glycolysis and mitochondrial reserve capacity. Similarly, when L-glucose was substituted for D-glucose, PDGF-dependent proliferation was abolished, as were changes in glycolysis and mitochondrial respiration. Interestingly, LDH (lactate dehydrogenase) protein levels and activity were significantly increased after PDGF treatment. Moreover, substitution of L-lactate for D-glucose was sufficient to increase mitochondrial reserve capacity and cell proliferation after treatment with PDGF; these effects were inhibited by the LDH inhibitor oxamate. These results suggest that glycolysis, by providing substrates that enhance the mitochondrial reserve capacity, plays an essential role in PDGF-induced cell proliferation, underscoring the integrated metabolic response required for proliferation of VSMCs in the diseased vasculature.

Collaboration


Dive into the Brian P. Dranka's collaboration.

Top Co-Authors

Avatar

B. Kalyanaraman

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Jacek Zielonka

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Joy Joseph

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor M. Darley-Usmar

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Micael Hardy

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Aimee Landar

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Alison Gifford

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Donna McAllister

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge