Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian P. English is active.

Publication


Featured researches published by Brian P. English.


Science | 2014

Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution

Bi-Chang Chen; Wesley R. Legant; Kai Wang; Lin Shao; Daniel E. Milkie; Michael W. Davidson; Chris Janetopoulos; Xufeng S. Wu; John A. Hammer; Zhe Liu; Brian P. English; Yuko Mimori-Kiyosue; Daniel P. Romero; Alex T. Ritter; Jennifer Lippincott-Schwartz; Lillian K. Fritz-Laylin; R. Dyche Mullins; Diana M. Mitchell; Joshua N. Bembenek; Anne-Cécile Reymann; Ralph Böhme; Stephan W. Grill; Jennifer T. Wang; Geraldine Seydoux; U. Serdar Tulu; Daniel P. Kiehart; Eric Betzig

Introduction In vivo imaging provides a window into the spatially complex, rapidly evolving physiology of the cell that structural imaging alone cannot. However, observing this physiology directly involves inevitable tradeoffs of spatial resolution, temporal resolution, and phototoxicity. This is especially true when imaging in three dimensions, which is essential to obtain a complete picture of many dynamic subcellular processes. Although traditional in vivo imaging tools, such as widefield and confocal microscopy, and newer ones, such as light-sheet microscopy, can image in three dimensions, they sacrifice substantial spatiotemporal resolution to do so and, even then, can often be used for only very limited durations before altering the physiological state of the specimen. Lattice light-sheet microscopy. An ultrathin structured light sheet (blue-green, center) excites fluorescence (orange) in successive planes as it sweeps through a specimen (gray) to generate a 3D image. The speed, noninvasiveness, and high spatial resolution of this approach make it a promising tool for in vivo 3D imaging of fast dynamic processes in cells and embryos, as shown here in five surrounding examples. Lattice light-sheet microscopy. An ultrathin structured light sheet (blue-green, center) excites fluorescence (orange) in successive planes as it sweeps through a specimen (gray) to generate a 3D image. The speed, noninvasiveness, and high spatial resolution of this approach make it a promising tool for in vivo 3D imaging of fast dynamic processes in cells and embryos, as shown here in five surrounding examples. Rationale To address these limitations, we developed a new microscope using ultrathin light sheets derived from two-dimensional (2D) optical lattices. These are scanned plane-by-plane through the specimen to generate a 3D image. The thinness of the sheet leads to high axial resolution and negligible photobleaching and background outside of the focal plane, while its simultaneous illumination of the entire field of view permits imaging at hundreds of planes per second even at extremely low peak excitation intensities. By implementing either superresolution structured illumination or by dithering the lattice to create a uniform light sheet, we imaged cells and small embryos in three dimensions, often at subsecond intervals, for hundreds to thousands of time points at the diffraction limit and beyond. Results We demonstrated the technique on 20 different biological processes spanning four orders of magnitude in space and time, including the binding kinetics of single Sox2 transcription factor molecules, 3D superresolution photoactivated localization microscopy of nuclear lamins, dynamic organelle rearrangements and 3D tracking of microtubule plus ends during mitosis, neutrophil motility in a collagen mesh, and subcellular protein localization and dynamics during embryogenesis in Caenorhabditis elegans and Drosophila melanogaster. Throughout, we established the performance advantages of lattice light-sheet microscopy compared with previous techniques and highlighted phenomena that, when seen at increased spatiotemporal detail, may hint at previously unknown biological mechanisms. Conclusion Photobleaching and phototoxicity are typically reduced by one to two orders of magnitude relative to that seen with a 1D scanned Bessel beam or the point array scanned excitation of spinning disk confocal microscopy. This suggests that the instantaneous peak power delivered to the specimen may be an even more important metric of cell health than the total photon dose and should enable extended 3D observation of endogenous levels of even sparsely expressed proteins produced by genome editing. Improvements of similar magnitude in imaging speed and a twofold gain in axial resolution relative to confocal microscopy yield 4D spatiotemporal resolution high enough to follow fast, nanoscale dynamic processes that would otherwise be obscured by poor resolution along one or more axes of spacetime. Last, the negligible background makes lattice light-sheet microscopy a promising platform for the extension of all methods of superresolution to larger and more densely fluorescent specimens and enables the study of signaling, transport, and stochastic self-assembly in complex environments with single-molecule sensitivity. From single molecules to embryos in living color Animation defines life, and the three-dimensional (3D) imaging of dynamic biological processes occurring within living specimens is essential to understand life. However, in vivo imaging, especially in 3D, involves inevitable tradeoffs of resolution, speed, and phototoxicity. Chen et al. describe a microscope that can address these concerns. They used a class of nondiffracting beams, known as 2D optical lattices, which spread the excitation energy across the entire field of view while simultaneously eliminating out-of-focus excitation. Lattice light sheets increase the speed of image acquisition and reduce phototoxicity, which expands the range of biological problems that can be investigated. The authors illustrate the power of their approach using 20 distinct biological systems ranging from single-molecule binding kinetics to cell migration and division, immunology, and embryonic development. Science, this issue 10.1126/science.1257998 A new microscope allows three-dimensional imaging of living systems at very high resolution in real time. Although fluorescence microscopy provides a crucial window into the physiology of living specimens, many biological processes are too fragile, are too small, or occur too rapidly to see clearly with existing tools. We crafted ultrathin light sheets from two-dimensional optical lattices that allowed us to image three-dimensional (3D) dynamics for hundreds of volumes, often at subsecond intervals, at the diffraction limit and beyond. We applied this to systems spanning four orders of magnitude in space and time, including the diffusion of single transcription factor molecules in stem cell spheroids, the dynamic instability of mitotic microtubules, the immunological synapse, neutrophil motility in a 3D matrix, and embryogenesis in Caenorhabditis elegans and Drosophila melanogaster. The results provide a visceral reminder of the beauty and the complexity of living systems.


Nature Methods | 2015

A general method to improve fluorophores for live-cell and single-molecule microscopy

Jonathan B. Grimm; Brian P. English; Jiji Chen; Joel Slaughter; Zhengjian Zhang; Andrey Revyakin; Ronak Patel; John J. Macklin; Davide Normanno; Robert H. Singer; Timothée Lionnet; Luke D. Lavis

Specific labeling of biomolecules with bright fluorophores is the keystone of fluorescence microscopy. Genetically encoded self-labeling tag proteins can be coupled to synthetic dyes inside living cells, resulting in brighter reporters than fluorescent proteins. Intracellular labeling using these techniques requires cell-permeable fluorescent ligands, however, limiting utility to a small number of classic fluorophores. Here we describe a simple structural modification that improves the brightness and photostability of dyes while preserving spectral properties and cell permeability. Inspired by molecular modeling, we replaced the N,N-dimethylamino substituents in tetramethylrhodamine with four-membered azetidine rings. This addition of two carbon atoms doubles the quantum efficiency and improves the photon yield of the dye in applications ranging from in vitro single-molecule measurements to super-resolution imaging. The novel substitution is generalizable, yielding a palette of chemical dyes with improved quantum efficiencies that spans the UV and visible range.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Single-molecule investigations of the stringent response machinery in living bacterial cells

Brian P. English; Vasili Hauryliuk; Arash Sanamrad; Stoyan Tankov; Nynke H. Dekker; Johan Elf

The RelA-mediated stringent response is at the heart of bacterial adaptation to starvation and stress, playing a major role in the bacterial cell cycle and virulence. RelA integrates several environmental cues and synthesizes the alarmone ppGpp, which globally reprograms transcription, translation, and replication. We have developed and implemented novel single-molecule tracking methodology to characterize the intracellular catalytic cycle of RelA. Our single-molecule experiments show that RelA is on the ribosome under nonstarved conditions and that the individual enzyme molecule stays off the ribosome for an extended period of time after activation. This suggests that the catalytically active part of the RelA cycle is performed off, rather than on, the ribosome, and that rebinding to the ribosome is not necessary to trigger each ppGpp synthesis event. Furthermore, we find fast activation of RelA in response to heat stress followed by RelA rapidly being reset to its inactive state, which makes the system sensitive to new environmental cues and hints at an underlying excitable response mechanism.


Science | 2016

Real-time quantification of single RNA translation dynamics in living cells

Tatsuya Morisaki; Kenneth Lyon; Keith F. DeLuca; Jennifer G. DeLuca; Brian P. English; Zhengjian Zhang; Luke D. Lavis; Jonathan B. Grimm; Sarada Viswanathan; Loren L. Looger; Timothée Lionnet; Timothy J. Stasevich

The when, where, and how of translation High-resolution single-molecule imaging shows the spatial and temporal dynamics of molecular events (see the Perspective by Iwasaki and Ingolia). Wu et al. and Morisaki et al. developed an approach to study the translation of single messenger RNAs (mRNAs) in live cells. Nascent polypeptides containing multimerized epitopes were imaged with fluorescent antibody fragments, while simultaneously detecting the single mRNAs using a different fluorescent tag. The approach enabled a direct readout of initiation and elongation, as well as revealing the spatial distribution of translation and allowing the correlation of polysome motility with translation dynamics. Membrane-targeted mRNAs could be distinguished from cytoplasmic mRNAs, as could single polysomes from higher-order polysomal complexes. Furthermore, the work reveals the stochasticity of translation, which can occur constitutively or in bursts, much like transcription, and the spatial regulation of translation in neuronal dendrites. Science, this issue p. 1430, p. 1425; see also p. 1391 Tracking nascent protein chains in living cells with antibody-based probes reveals the stochastic nature of single mRNA translation. Although messenger RNA (mRNA) translation is a fundamental biological process, it has never been imaged in real time in vivo with single-molecule precision. To achieve this, we developed nascent chain tracking (NCT), a technique that uses multi-epitope tags and antibody-based fluorescent probes to quantify protein synthesis dynamics at the single-mRNA level. NCT reveals an elongation rate of ~10 amino acids per second, with initiation occurring stochastically every ~30 seconds. Polysomes contain ~1 ribosome every 200 to 900 nucleotides and are globular rather than elongated in shape. By developing multicolor probes, we showed that most polysomes act independently; however, a small fraction (~5%) form complexes in which two distinct mRNAs can be translated simultaneously. The sensitivity and versatility of NCT make it a powerful new tool for quantifying mRNA translation kinetics.


EMBO Reports | 2012

Positive allosteric feedback regulation of the stringent response enzyme RelA by its product.

Viktoriya Shyp; Stoyan Tankov; Andrey Ermakov; Pavel Kudrin; Brian P. English; Måns Ehrenberg; Tanel Tenson; Johan Elf; Vasili Hauryliuk

During the stringent response, Escherichia coli enzyme RelA produces the ppGpp alarmone, which in turn regulates transcription, translation and replication. We show that ppGpp dramatically increases the turnover rate of its own ribosome‐dependent synthesis by RelA, resulting in direct positive regulation of an enzyme by its product. Positive allosteric regulation therefore constitutes a new mechanism of enzyme activation. By integrating the output of individual RelA molecules and ppGpp degradation pathways, this regulatory circuit contributes to a fast and coordinated transition to stringency.


eLife | 2016

Mapping translation 'hot-spots' in live cells by tracking single molecules of mRNA and ribosomes

Zachary Katz; Brian P. English; Timothée Lionnet; Young J. Yoon; Nilah Monnier; Ben Ovryn; Mark Bathe; Robert H. Singer

Messenger RNA localization is important for cell motility by local protein translation. However, while single mRNAs can be imaged and their movements tracked in single cells, it has not yet been possible to determine whether these mRNAs are actively translating. Therefore, we imaged single β-actin mRNAs tagged with MS2 stem loops colocalizing with labeled ribosomes to determine when polysomes formed. A dataset of tracking information consisting of thousands of trajectories per cell demonstrated that mRNAs co-moving with ribosomes have significantly different diffusion properties from non-translating mRNAs that were exposed to translation inhibitors. These data indicate that ribosome load changes mRNA movement and therefore highly translating mRNAs move slower. Importantly, β-actin mRNA near focal adhesions exhibited sub-diffusive corralled movement characteristic of increased translation. This method can identify where ribosomes become engaged for local protein production and how spatial regulation of mRNA-protein interactions mediates cell directionality. DOI: http://dx.doi.org/10.7554/eLife.10415.001


eLife | 2016

RNA Polymerase II cluster dynamics predict mRNA output in living cells

Won-Ki Cho; Namrata Jayanth; Brian P. English; Takuma Inoue; J. Owen Andrews; William Conway; Jonathan B. Grimm; Jan-Hendrik Spille; Luke D. Lavis; Timothée Lionnet; Ibrahim Cisse

Protein clustering is a hallmark of genome regulation in mammalian cells. However, the dynamic molecular processes involved make it difficult to correlate clustering with functional consequences in vivo. We developed a live-cell super-resolution approach to uncover the correlation between mRNA synthesis and the dynamics of RNA Polymerase II (Pol II) clusters at a gene locus. For endogenous β-actin genes in mouse embryonic fibroblasts, we observe that short-lived (~8 s) Pol II clusters correlate with basal mRNA output. During serum stimulation, a stereotyped increase in Pol II cluster lifetime correlates with a proportionate increase in the number of mRNAs synthesized. Our findings suggest that transient clustering of Pol II may constitute a pre-transcriptional regulatory event that predictably modulates nascent mRNA output. DOI: http://dx.doi.org/10.7554/eLife.13617.001


Proceedings of the National Academy of Sciences of the United States of America | 2016

Glutamate-induced RNA localization and translation in neurons

Young J. Yoon; Bin Wu; Adina R. Buxbaum; Sulagna Das; Brian P. English; Jonathan B. Grimm; Luke D. Lavis; Robert H. Singer

Significance Local translation in dendrites of neurons has been shown to be important for neuronal function and synaptic biology. We imaged changes in the localization of β-actin mRNA and protein in dendritic spines. Our results showed that activating specific synapses can drive changes in the localization of endogenous mRNA and the translation of reporter RNA in dendrites of hippocampal neurons. Enhancing our understanding of the spatial and temporal kinetics of mRNA localization in dendrites informs local protein synthesis in neurons. These results provide direct evidence of protein synthesis away from the soma and allow us to determine how the kinetics of mRNA localization and translation could influence synaptic physiology and plasticity. Localization of mRNA is required for protein synthesis to occur within discrete intracellular compartments. Neurons represent an ideal system for studying the precision of mRNA trafficking because of their polarized structure and the need for synapse-specific targeting. To investigate this targeting, we derived a quantitative and analytical approach. Dendritic spines were stimulated by glutamate uncaging at a diffraction-limited spot, and the localization of single β-actin mRNAs was measured in space and time. Localization required NMDA receptor activity, a dynamic actin cytoskeleton, and the transacting RNA-binding protein, Zipcode-binding protein 1 (ZBP1). The ability of the mRNA to direct newly synthesized proteins to the site of localization was evaluated using a Halo-actin reporter so that RNA and protein were detected simultaneously. Newly synthesized Halo-actin was enriched at the site of stimulation, required NMDA receptor activity, and localized preferentially at the periphery of spines. This work demonstrates that synaptic activity can induce mRNA localization and local translation of β-actin where the new actin participates in stabilizing the expanding synapse in dendritic spines.


Angewandte Chemie | 2015

Tracking Surface Glycans on Live Cancer Cells with Single-Molecule Sensitivity†

Hao Jiang; Brian P. English; Rachel Hazan; Peng Wu; Ben Ovryn

Using a combination of metabolically labeled glycans, a bioorthogonal copper(I)-catalyzed azide-alkyne cycloaddition, and the controlled bleaching of fluorescent probes conjugated to azide- or alkyne-tagged glycans, a sufficiently low spatial density of dye-labeled glycans was achieved, enabling dynamic single-molecule tracking and super-resolution imaging of N-linked sialic acids and O-linked N-acetyl galactosamine (GalNAc) on the membrane of live cells. Analysis of the trajectories of these dye-labeled glycans in mammary cancer cells revealed constrained diffusion of both N- and O-linked glycans, which was interpreted as reflecting the mobility of the glycan rather than to be caused by transient immobilization owing to spatial inhomogeneities on the plasma membrane. Stochastic optical reconstruction microscopy (STORM) imaging revealed the structure of dynamic membrane nanotubes.


Scientific Reports | 2011

Single molecule tracking fluorescence microscopy in mitochondria reveals highly dynamic but confined movement of Tom40

Anton Kuzmenko; Stoyan Tankov; Brian P. English; Ivan Tarassov; Tanel Tenson; Piotr Kamenski; Johan Elf; Vasili Hauryliuk

Tom40 is an integral protein of the mitochondrial outer membrane, which as the central component of the Translocase of the Outer Membrane (TOM) complex forms a channel for protein import. We characterize the diffusion properties of individual Tom40 molecules fused to the photoconvertable fluorescent protein Dendra2 with millisecond temporal resolution. By imaging individual Tom40 molecules in intact isolated yeast mitochondria using photoactivated localization microscopy with sub-diffraction limited spatial precision, we demonstrate that Tom40 movement in the outer mitochondrial membrane is highly dynamic but confined in nature, suggesting anchoring of the TOM complex as a whole.

Collaboration


Dive into the Brian P. English's collaboration.

Top Co-Authors

Avatar

Robert H. Singer

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jonathan B. Grimm

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Luke D. Lavis

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Timothée Lionnet

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Bathe

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nilah Monnier

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zachary Katz

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge