Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan B. Grimm is active.

Publication


Featured researches published by Jonathan B. Grimm.


Nature Methods | 2015

A general method to improve fluorophores for live-cell and single-molecule microscopy

Jonathan B. Grimm; Brian P. English; Jiji Chen; Joel Slaughter; Zhengjian Zhang; Andrey Revyakin; Ronak Patel; John J. Macklin; Davide Normanno; Robert H. Singer; Timothée Lionnet; Luke D. Lavis

Specific labeling of biomolecules with bright fluorophores is the keystone of fluorescence microscopy. Genetically encoded self-labeling tag proteins can be coupled to synthetic dyes inside living cells, resulting in brighter reporters than fluorescent proteins. Intracellular labeling using these techniques requires cell-permeable fluorescent ligands, however, limiting utility to a small number of classic fluorophores. Here we describe a simple structural modification that improves the brightness and photostability of dyes while preserving spectral properties and cell permeability. Inspired by molecular modeling, we replaced the N,N-dimethylamino substituents in tetramethylrhodamine with four-membered azetidine rings. This addition of two carbon atoms doubles the quantum efficiency and improves the photon yield of the dye in applications ranging from in vitro single-molecule measurements to super-resolution imaging. The novel substitution is generalizable, yielding a palette of chemical dyes with improved quantum efficiencies that spans the UV and visible range.


Science | 2016

Real-time quantification of single RNA translation dynamics in living cells

Tatsuya Morisaki; Kenneth Lyon; Keith F. DeLuca; Jennifer G. DeLuca; Brian P. English; Zhengjian Zhang; Luke D. Lavis; Jonathan B. Grimm; Sarada Viswanathan; Loren L. Looger; Timothée Lionnet; Timothy J. Stasevich

The when, where, and how of translation High-resolution single-molecule imaging shows the spatial and temporal dynamics of molecular events (see the Perspective by Iwasaki and Ingolia). Wu et al. and Morisaki et al. developed an approach to study the translation of single messenger RNAs (mRNAs) in live cells. Nascent polypeptides containing multimerized epitopes were imaged with fluorescent antibody fragments, while simultaneously detecting the single mRNAs using a different fluorescent tag. The approach enabled a direct readout of initiation and elongation, as well as revealing the spatial distribution of translation and allowing the correlation of polysome motility with translation dynamics. Membrane-targeted mRNAs could be distinguished from cytoplasmic mRNAs, as could single polysomes from higher-order polysomal complexes. Furthermore, the work reveals the stochasticity of translation, which can occur constitutively or in bursts, much like transcription, and the spatial regulation of translation in neuronal dendrites. Science, this issue p. 1430, p. 1425; see also p. 1391 Tracking nascent protein chains in living cells with antibody-based probes reveals the stochastic nature of single mRNA translation. Although messenger RNA (mRNA) translation is a fundamental biological process, it has never been imaged in real time in vivo with single-molecule precision. To achieve this, we developed nascent chain tracking (NCT), a technique that uses multi-epitope tags and antibody-based fluorescent probes to quantify protein synthesis dynamics at the single-mRNA level. NCT reveals an elongation rate of ~10 amino acids per second, with initiation occurring stochastically every ~30 seconds. Polysomes contain ~1 ribosome every 200 to 900 nucleotides and are globular rather than elongated in shape. By developing multicolor probes, we showed that most polysomes act independently; however, a small fraction (~5%) form complexes in which two distinct mRNAs can be translated simultaneously. The sensitivity and versatility of NCT make it a powerful new tool for quantifying mRNA translation kinetics.


Nature Methods | 2016

High-density three-dimensional localization microscopy across large volumes

Wesley R. Legant; Lin Shao; Jonathan B. Grimm; Timothy A. Brown; Daniel E. Milkie; Brian B Avants; Luke D. Lavis; Eric Betzig

Extending three-dimensional (3D) single-molecule localization microscopy away from the coverslip and into thicker specimens will greatly broaden its biological utility. However, because of the limitations of both conventional imaging modalities and conventional labeling techniques, it is a challenge to localize molecules in three dimensions with high precision in such samples while simultaneously achieving the labeling densities required for high resolution of densely crowded structures. Here we combined lattice light-sheet microscopy with newly developed, freely diffusing, cell-permeable chemical probes with targeted affinity for DNA, intracellular membranes or the plasma membrane. We used this combination to perform high–localization precision, ultrahigh–labeling density, multicolor localization microscopy in samples up to 20 μm thick, including dividing cells and the neuromast organ of a zebrafish embryo. We also demonstrate super-resolution correlative imaging with protein-specific photoactivable fluorophores, providing a mutually compatible, single-platform alternative to correlative light-electron microscopy over large volumes.


eLife | 2014

3D imaging of Sox2 enhancer clusters in embryonic stem cells

Zhe Liu; Wesley R. Legant; Bi-Chang Chen; Li Li; Jonathan B. Grimm; Luke D. Lavis; Eric Betzig; Robert Tjian

Combinatorial cis-regulatory networks encoded in animal genomes represent the foundational gene expression mechanism for directing cell-fate commitment and maintenance of cell identity by transcription factors (TFs). However, the 3D spatial organization of cis-elements and how such sub-nuclear structures influence TF activity remain poorly understood. Here, we combine lattice light-sheet imaging, single-molecule tracking, numerical simulations, and ChIP-exo mapping to localize and functionally probe Sox2 enhancer-organization in living embryonic stem cells. Sox2 enhancers form 3D-clusters that are segregated from heterochromatin but overlap with a subset of Pol II enriched regions. Sox2 searches for specific binding targets via a 3D-diffusion dominant mode when shuttling long-distances between clusters while chromatin-bound states predominate within individual clusters. Thus, enhancer clustering may reduce global search efficiency but enables rapid local fine-tuning of TF search parameters. Our results suggest an integrated model linking cis-element 3D spatial distribution to local-versus-global target search modalities essential for regulating eukaryotic gene transcription. DOI: http://dx.doi.org/10.7554/eLife.04236.001


ACS Chemical Biology | 2013

Carbofluoresceins and carborhodamines as scaffolds for high-contrast fluorogenic probes.

Jonathan B. Grimm; Andrew J. Sung; Wesley R. Legant; Phuson Hulamm; Sylwia M. Matlosz; Eric Betzig; Luke D. Lavis

Fluorogenic molecules are important tools for advanced biochemical and biological experiments. The extant collection of fluorogenic probes is incomplete, however, leaving regions of the electromagnetic spectrum unutilized. Here, we synthesize green-excited fluorescent and fluorogenic analogues of the classic fluorescein and rhodamine 110 fluorophores by replacement of the xanthene oxygen with a quaternary carbon. These anthracenyl “carbofluorescein” and “carborhodamine 110” fluorophores exhibit excellent fluorescent properties and can be masked with enzyme- and photolabile groups to prepare high-contrast fluorogenic molecules useful for live cell imaging experiments and super-resolution microscopy. Our divergent approach to these red-shifted dye scaffolds will enable the preparation of numerous novel fluorogenic probes with high biological utility.


Progress in Molecular Biology and Translational Science | 2013

The Chemistry of Small-Molecule Fluorogenic Probes

Jonathan B. Grimm; Laurel M. Heckman; Luke D. Lavis

Chemical fluorophores find wide use in biology to detect and visualize different phenomena. A key advantage of small-molecule dyes is the ability to construct compounds where fluorescence is activated by chemical or biochemical processes. Fluorogenic molecules, in which fluorescence is activated by enzymatic activity, light, or environmental changes, enable advanced bioassays and sophisticated imaging experiments. Here, we detail the collection of fluorophores and highlight both general strategies and unique approaches that are employed to control fluorescence using chemistry.


Angewandte Chemie | 2011

Facile and general synthesis of photoactivatable xanthene dyes.

Laura M. Wysocki; Jonathan B. Grimm; Ariana N. Tkachuk; Timothy A. Brown; Eric Betzig; Luke D. Lavis

Despite the apparent simplicity of the xanthene fluorophores, the preparation of caged derivatives with free carboxy groups remains a synthetic challenge. A straightforward and flexible strategy for preparing rhodamine and fluorescein derivatives was developed using reduced, “leuco” intermediates.


Angewandte Chemie | 2016

Synthesis of a Far-Red Photoactivatable Silicon-Containing Rhodamine for Super-Resolution Microscopy.

Jonathan B. Grimm; Teresa Klein; Benjamin G. Kopek; Gleb Shtengel; Harald F. Hess; Markus Sauer; Luke D. Lavis

Abstract The rhodamine system is a flexible framework for building small‐molecule fluorescent probes. Changing N‐substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si‐containing analogue of Q‐rhodamine. This probe is the first example of a “caged” Si‐rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red‐shifted to allow multicolor imaging. The dye is a useful label for super‐resolution imaging and constitutes a new scaffold for far‐red fluorogenic molecules.


PLOS ONE | 2013

Correlative Photoactivated Localization and Scanning Electron Microscopy

Benjamin G. Kopek; Gleb Shtengel; Jonathan B. Grimm; David A. Clayton; Harald F. Hess

The ability to localize proteins precisely within subcellular space is crucial to understanding the functioning of biological systems. Recently, we described a protocol that correlates a precise map of fluorescent fusion proteins localized using three-dimensional super-resolution optical microscopy with the fine ultrastructural context of three-dimensional electron micrographs. While it achieved the difficult simultaneous objectives of high photoactivated fluorophore preservation and ultrastructure preservation, it required a super-resolution optical and specialized electron microscope that is not available to many researchers. We present here a faster and more practical protocol with the advantage of a simpler two-dimensional optical (Photoactivated Localization Microscopy (PALM)) and scanning electron microscope (SEM) system that retains the often mutually exclusive attributes of fluorophore preservation and ultrastructure preservation. As before, cryosections were prepared using the Tokuyasu protocol, but the staining protocol was modified to be amenable for use in a standard SEM without the need for focused ion beam ablation. We show the versatility of this technique by labeling different cellular compartments and structures including mitochondrial nucleoids, peroxisomes, and the nuclear lamina. We also demonstrate simultaneous two-color PALM imaging with correlated electron micrographs. Lastly, this technique can be used with small-molecule dyes as demonstrated with actin labeling using phalloidin conjugated to a caged dye. By retaining the dense protein labeling expected for super-resolution microscopy combined with ultrastructural preservation, simplifying the tools required for correlative microscopy, and expanding the number of useful labels we expect this method to be accessible and valuable to a wide variety of researchers.


Organic Letters | 2011

Synthesis of Rhodamines from Fluoresceins Using Pd-Catalyzed C–N Cross-Coupling

Jonathan B. Grimm; Luke D. Lavis

A unified, convenient, and efficient strategy for the preparation of rhodamines and N,N′-diacylated rhodamines has been developed. Fluorescein ditriflates were found to undergo palladium-catalyzed C–N cross-coupling with amines, amides, carbamates, and other nitrogen nucleophiles to provide direct access to known and novel rhodamine derivatives, including fluorescent dyes, quenchers, and latent fluorophores.

Collaboration


Dive into the Jonathan B. Grimm's collaboration.

Top Co-Authors

Avatar

Luke D. Lavis

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Robert Tjian

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Brian P. English

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhe Liu

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Eric Betzig

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Li Li

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Peng Dong

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Timothée Lionnet

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Zhengjian Zhang

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge