Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian P. Gilmour is active.

Publication


Featured researches published by Brian P. Gilmour.


Journal of Inflammation | 2009

Inhibition of NFκB by the natural product Withaferin A in cellular models of Cystic Fibrosis inflammation.

Rangan Maitra; Melissa A Porter; Shan Huang; Brian P. Gilmour

Cystic Fibrosis (CF) is one of the most common autosomal genetic disorders in humans. This disease is caused by mutations within a single gene, coding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The phenotypic hallmark of CF is chronic lung infection and associated inflammation from opportunistic microbes such as Pseudomonas aeruginosa (PA), Haemophilus influenzae, and Staphylococcus aureus. This eventually leads to deterioration of lung function and death in most CF patients. Unfortunately, there is no approved therapy for correcting the genetic defect causal to the disease. Hence, controlling inflammation and infection in CF patients are critical to disease management. Accordingly, anti-inflammatory agents and antibiotics are used to manage chronic inflammation and infection in CF patients. However, most of the anti-inflammatory agents in CF have severe limitations due to adverse side effects, and resistance to antibiotics is becoming an even more prominent problem. Thus, new agents that can be used to control chronic inflammation in CF are needed in the absence of a cure for the disease. Activation of the transcription factor NFκB through Toll-like receptors (TLR) following bacterial infection is principally involved in regulating lung inflammation in CF. NFκB regulates the transcription of several genes that are involved in inflammation, anti-apoptosis and anti-microbial activity, and hyper-activation of this transcription factor leads to a potent inflammatory response. Thus, NFκB is a potential anti-inflammatory drug target in CF. Screening of several compounds from natural sources in an in vitro model of CF-related inflammation wherein NFκB is activated by filtrates of a clinically isolated strain of PA (PAF) led us to Withaferin A (WFA), a steroidal lactone from the plant Withania Somnifera L. Dunal. Our data demonstrate that WFA blocks PAF-induced activation of NFκB as determined using reporter assays, IL-8 measurements and high-content fluorescent imaging of NFκB subunit p65 translocation. Since the airways of CF patients can be specifically targeted for delivery of therapeutics, we propose that WFA should be further studied as an anti-inflammatory agent in models of CF related inflammation mediated by NFκB.


Psychopharmacology | 2010

Kappa opioid mediation of cannabinoid effects of the potent hallucinogen, salvinorin A, in rodents.

D. Matthew Walentiny; Robert E. Vann; Jonathan A. Warner; Lindsey S. King; Herbert H. Seltzman; Hernan Navarro; Charles E. Twine; Brian F. Thomas; Anne F. Gilliam; Brian P. Gilmour; F. Ivy Carroll; Jenny L. Wiley

RationaleSalvinorin A, the primary psychoactive derivative of the hallucinogenic herb Salvia divinorum, is a potent and highly selective kappa-opioid receptor (KOR) agonist. Several recent studies, however, have suggested endocannabinoid system mediation of some of its effects.ObjectivesThis study represents a systematic examination of this hypothesis.MethodsSalvinorin A was isolated from S. divinorum and was evaluated in a battery of in vitro and in vivo procedures designed to detect cannabinoid activity, including CB1 receptor radioligand and [35S]GTPγS binding, calcium flux assay, in vivo cannabinoid screening tests, and drug discrimination.ResultsSalvinorin A did not bind to nor activate CB1 receptors. In vivo salvinorin A produced pronounced hypolocomotion and antinociception (and to a lesser extent, hypothermia). These effects were blocked by the selective KOR antagonist, JDTic, but not by the CB1 receptor antagonist rimonabant. Interestingly, however, rimonabant attenuated KOR activation stimulated by U69,593 in a [35S]GTPγS assay. Salvinorin A did not substitute for Δ9-tetrahydrocannabinol (THC) in mice trained to discriminate THC.ConclusionsThese findings suggest that similarities in the pharmacological effects of salvinorin A and those of cannabinoids are mediated by its activation of KOR rather than by any direct action of salvinorin A on the endocannabinoid system. Further, the results suggest that rimonabant reversal of salvinorin A effects in previous studies may be explained in part by rimonabant attenuation of KOR activation.


Journal of Medicinal Chemistry | 2014

Diarylureas as Allosteric Modulators of the Cannabinoid CB1 Receptor: Structure–Activity Relationship Studies on 1-(4-Chlorophenyl)-3-{3-[6-(pyrrolidin-1-yl)pyridin-2-yl]phenyl}urea (PSNCBAM-1)

Nadezhda German; Ann M. Decker; Brian P. Gilmour; Jenny L. Wiley; Brian F. Thomas; Yanan Zhang

The recent discovery of allosteric modulators of the CB1 receptor including PSNCBAM-1 (4) has generated significant interest in CB1 receptor allosteric modulation. Here in the first SAR study on 4, we have designed and synthesized a series of analogs focusing on modifications at two positions. Pharmacological evaluation in calcium mobilization and binding assays revealed the importance of alkyl substitution at the 2-aminopyridine moiety and electron deficient aromatic groups at the 4-chlorophenyl position for activity at the CB1 receptor, resulting in several analogs with comparable potency to 4. These compounds increased the specific binding of [3H]CP55,940, in agreement with previous reports. Importantly, 4 and two analogs dose-dependently reduced the Emax of the agonist curve in the CB1 calcium mobilization assays, confirming their negative allosteric modulator characteristics. Given the side effects associated with CB1 receptor orthosteric antagonists, negative allosteric modulators provide an alternative approach to modulate the pharmacologically important CB1 receptor.


Bioorganic & Medicinal Chemistry Letters | 2008

Identifying structural features on 1,1-diphenyl-hexahydro-oxazolo[3,4-a]pyrazin-3-ones critical for Neuropeptide S antagonist activity

Yanan Zhang; Brian P. Gilmour; Hernan Navarro; Scott P. Runyon

A series of 7-substituted 1,1-diphenyl-hexahydro-oxazolo[3,4-a]pyrazin-3-ones were synthesized and tested for Neuropeptide S (NPS) antagonist activity. A concise synthetic route was developed, which features a DMAP catalyzed carbamate formation. 4-Fluorobenzyl urea (1c) and benzyl urea (1d) were identified as the most potent antagonists among the compounds examined. Structure-activity relationships (SARs) demonstrate that a 7-position urea functionality is required for potent antagonist activity and alkylation of the urea nitrogen (1e) or replacement with carbon or oxygen (5a) results in reduced potency. In addition, compounds with alpha-methyl substitution (1b) or elongated alkyl chains (1h and 1j) had reduced potency, indicating a limited tolerance for 7-position substituents.


Journal of Medicinal Chemistry | 2013

Substituted Tetrahydroisoquinolines as Selective Antagonists for the Orexin 1 Receptor

David A. Perrey; Nadezhda German; Brian P. Gilmour; Jun-Xu Li; Danni L. Harris; Brian F. Thomas; Yanan Zhang

Increasing evidence implicates the orexin 1 (OX1) receptor in reward processes, suggesting OX1 antagonism could be therapeutic in drug addiction. In a program to develop an OX1 selective antagonist, we designed and synthesized a series of substituted tetrahydroisoquinolines and determined their potency in OX1 and OX2 calcium mobilization assays. Structure-activity relationship (SAR) studies revealed limited steric tolerance and a preference for electron deficiency at the 7-position. Pyridylmethyl groups were shown to be optimal for activity at the acetamide position. Computational studies resulted in a pharmacophore model and confirmed the SAR results. Compound 72 significantly attenuated the development of place preference for cocaine in rats.


Journal of Biomolecular Screening | 2006

A Rapid Functional Assay for the Human Trace Amine-Associated Receptor 1 Based on the Mobilization of Internal Calcium

Hernan Navarro; Brian P. Gilmour; Anita H. Lewin

The molecular targets for trace amines (TAs) such as p-tyramine and β-phenylethylamine have been recently discovered and have been shown to comprise a family of G-protein-coupled receptors based on DNA sequence homologies. These have been termed trace amine-associated receptors (TAARs) because TAs do not activate all of the identified receptors. Because TA may be involved in modulating a variety of behaviors including mood, cognition, and addiction, it is of interest to discover novel ligands for TAARs to probe the role TAs play in brain function. Pharmacophore development for the Gs-coupled human TAAR1 (hTAAR1) would be aided by a rapid functional assay amenable to screening libraries of compounds. Accordingly, the authors used RD-HGA16 CHO-1 cells from Molecular Devices, which stably express the promiscuous Gq, Gα 16, to create a cell line stably expressing hTAAR1, thereby coupling receptor activation to the mobilization of internal calcium. They used this cell line to develop a homogenous fluorometric imaging plate reader-based assay using the Calcium 3 fluorescent dye. The EC50 and Emax data obtained for known TAs are in close agreement with previous work using transient hTAAR1 expression systems or a chimeric receptor. These data indicate that the hTAAR1 retains its reported pharmacological characteristics when coupled to Gα 16.


Bioorganic & Medicinal Chemistry Letters | 2011

Diaryl urea analogues of SB-334867 as orexin-1 receptor antagonists

David A. Perrey; Brian P. Gilmour; Scott P. Runyon; Brian F. Thomas; Yanan Zhang

As a part of our program to develop OX1-CB1 bivalent ligands, we required a better understanding of the basic structure-activity relationships (SARs) of orexin antagonists. A series of SB-334867 analogues were synthesized and evaluated in calcium mobilization assays. SAR results suggest that the 2-methylbenzoxazole moiety may be replaced with a disubstituted 4-aminophenyl group without loss of activity and an electron-deficient system is generally preferred at the 1,5-naphthyridine moiety for OX1 antagonist activity. In particular, substitution of larger potential linkers such as n-hexyl provided compound 33 with equivalent activity at the OX1 receptor compared to the lead compound SB-334867. These compounds should be of value in the development of ligands targeting the orexin-1 receptor and its potential heterodimers.


Bioorganic & Medicinal Chemistry | 2011

Trace amine-associated receptor 1 is a stereoselective binding site for compounds in the amphetamine class.

Anita H. Lewin; Gregory M. Miller; Brian P. Gilmour

The demonstrated ability of amphetamine to functionally activate the rat trace amine associated receptor 1 (rTAAR1) and the subsequent reports of amphetamine activation of TAAR1 in rhesus monkey mouse, human, and human-rat chimeric TAAR1-expressing cell lines has led to speculation as to the role of this receptor in the central nervous system (CNS) responses associated with amphetamine and its analogs. The agonist potencies of ten pairs of enantiomeric amphetamines, including several with known CNS activity, at primate TAAR1 stably expressed in RD-HGA16 cells, robustly indicate the S-configuration to be associated with higher potency. Moreover, the rank order of potency to activate TAAR1 parallels the stimulant action reported by humans for the specific amphetamines. Taken together, these data suggest that TAAR1 is a stereoselective binding site for amphetamine and that activation of TAAR1 is involved in the modulation of the stimulant properties of amphetamine and its congeners. In addition, the observed parallel between hTAAR1 and rhTAAR1 responses supports the rhesus monkey as a highly translational model for developing novel TAAR1-directed compounds as therapeutics for amphetamine-related addictions.


ACS Medicinal Chemistry Letters | 2014

Toward the Development of Bivalent Ligand Probes of Cannabinoid CB1 and Orexin OX1 Receptor Heterodimers.

David A. Perrey; Brian P. Gilmour; Brian F. Thomas; Yanan Zhang

Cannabinoid CB1 and orexin OX1 receptors have been suggested to form heterodimers and oligomers. Aimed at studying these complexes, a series of bivalent CB1 and OX1 ligands combining SR141716 and ACT-078573 pharmacophores were designed, synthesized, and tested for activity against CB1 and OX1 individually and in cell lines that coexpress both receptors. Compound 20 showed a robust enhancement in potency at both receptors when coexpressed as compared to individually expressed, suggesting possible interaction with CB1-OX1 dimers. Bivalent ligands targeting CB1-OX1 receptor dimers could be potentially useful as a tool for further exploring the roles of such heterodimers in vitro and in vivo.


ACS Chemical Neuroscience | 2014

Synthesis, Pharmacological Characterization, and Structure–Activity Relationship Studies of Small Molecular Agonists for the Orphan GPR88 Receptor

Chunyang Jin; Ann M. Decker; Xi Ping Huang; Brian P. Gilmour; Bruce E. Blough; Bryan L. Roth; Yang Hu; Joseph B. Gill; X. Peter Zhang

GPR88 is an orphan G-protein-coupled receptor (GPCR) enriched in the striatum. Genetic deletion and gene expression studies have suggested that GPR88 plays an important role in the regulation of striatal functions and is implicated in psychiatric disorders. The signal transduction pathway and receptor functions of GPR88, however, are still largely unknown due to the lack of endogenous and synthetic ligands. In this paper, we report the synthesis of a GPR88 agonist 2-PCCA and its pure diastereomers, which were functionally characterized in both transiently and stably expressing GPR88 HEK293 cells. 2-PCCA inhibited isoproterenol-stimulated cAMP accumulation in a concentration-dependent manner in cells expressing GPR88 but not in the control cells, suggesting that the observed cAMP inhibition is mediated through GPR88 and that GPR88 is coupled to Gαi. 2-PCCA did not induce calcium mobilization in GPR88 cells, indicating no Gαq-mediated response. A structure-activity relationship (SAR) study of 2-PCCA was also conducted to explore the key structural features for GPR88 agonist activity.

Collaboration


Dive into the Brian P. Gilmour's collaboration.

Top Co-Authors

Avatar

Yanan Zhang

Research Triangle Park

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge