Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Danni L. Harris is active.

Publication


Featured researches published by Danni L. Harris.


Journal of Medicinal Chemistry | 2013

Substituted Tetrahydroisoquinolines as Selective Antagonists for the Orexin 1 Receptor

David A. Perrey; Nadezhda German; Brian P. Gilmour; Jun-Xu Li; Danni L. Harris; Brian F. Thomas; Yanan Zhang

Increasing evidence implicates the orexin 1 (OX1) receptor in reward processes, suggesting OX1 antagonism could be therapeutic in drug addiction. In a program to develop an OX1 selective antagonist, we designed and synthesized a series of substituted tetrahydroisoquinolines and determined their potency in OX1 and OX2 calcium mobilization assays. Structure-activity relationship (SAR) studies revealed limited steric tolerance and a preference for electron deficiency at the 7-position. Pyridylmethyl groups were shown to be optimal for activity at the acetamide position. Computational studies resulted in a pharmacophore model and confirmed the SAR results. Compound 72 significantly attenuated the development of place preference for cocaine in rats.


Bioorganic & Medicinal Chemistry | 2014

Identifying structural determinants of potency for analogs of apelin-13: Integration of C-terminal truncation with structure-activity

Yanyan Zhang; Rangan Maitra; Danni L. Harris; Rodney W. Snyder; Scott P. Runyon

Apelin peptides function as endogenous ligands of the APJ receptor and have been implicated in a number of important biological processes. While several apelinergic peptides have been reported, apelin-13 (Glu-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe) remains the most commonly studied and reported ligand of APJ. This study examines the effect of C-terminal peptide truncations and comprehensive structure-activity relationship (SAR) for a series of analogs based on apelin-13 in an attempt to develop more potent and stable analogs. C-terminal truncation studies identified apelin-13 (N-acetyl 2-11) amide (9) as a potent agonist (EC50=4.4 nM). Comprehensive SAR studies also determined that Arg-2, Leu-5, Lys-8, Met-11, were key positions for determining agonist potency, whereas the hydrophobic volume of Lys-8 was a specific determinate of activity. Plasma stability studies on the truncated 10-mer peptide 28 (EC50=33 nM) indicated the primary sites of cleavage occurred between Nle-3 and Leu-4 and also between Ala-5 and Ala-6. These new ligands represent the shortest known apelin peptides with good functional potency.


Journal of Medicinal Chemistry | 2015

Regulation of the Apelinergic System and Its Potential in Cardiovascular Disease: Peptides and Small Molecules as Tools for Discovery.

Sanju Narayanan; Danni L. Harris; Rangan Maitra; Scott P. Runyon

Apelin peptides and the apelin receptor represent a relatively new therapeutic axis for the potential treatment of cardiovascular disease. Several reports suggest apelin receptor activation with apelin peptides results in cardioprotection as noted through positive ionotropy, angiogenesis, reduction of mean arterial blood pressure, and apoptosis. Considering the potential therapeutic benefit attainable through modulation of the apelinergic system, research is expanding to develop novel therapies that limit the inherent rapid degradation of endogenous apelin peptides and produce metabolically stable small molecule agonists and antagonists to more rigorously interrogate the apelin receptor system. This review details the structure-activity relationships for chemically modified apelin peptides and recent disclosures of small molecule agonists and antagonists and summarizes the peer reviewed and patented literature. Development of metabolically stable ligands of apelin receptor and their effects in various models over the coming years will hopefully lead to establishment of this receptor as a validated target for cardiovascular indications.


Journal of Biomolecular Structure & Dynamics | 2000

Benzodiazepine-induced hyperphagia: development and assessment of a 3D pharmacophore by computational methods.

Marta Filizola; Danni L. Harris; Gilda H. Loew

Abstract Benzodiazepine receptor (BDZR) ligands are structurally diverse compounds that bind to specific binding sites on GABAA receptors and allosterically modulate the effect of GABA on chloride ion flux. The binding of BDZR ligands to this receptor system results in activity at multiple behavioral endpoints, including anxiolytic, sedative, anticonvulsant, and hyperphagic effects. In the work presented here, a computational procedure developed in our laboratory has been used to obtain a 3D pharmacophore for ligand recognition of the GABAA/BDZRS initiating the hyperphagic response. To accomplish this goal, 17 structurally diverse compounds, previously assessed in our laboratory for activity at the hyperphagic endpoint, were used. The result is a four-component 3D pharmacophore. It consists of two proton acceptor atoms, the centroid of an aromatic ring and the centroid of a hydrophobic moiety in a common geometric arrangement in all compounds with activity at this endpoint. This 3D pharmacophore was then assessed and successfully validated using three different tests. First, two BDZR ligands, which were included as negative controls in the set of seventeen compounds used for the pharmacophore development, did not fit the pharmacophore. Second, some benzodiazepine ligands known to have activity at the hyperphagia endpoint, but not included in the pharmacophore development, were used as positive controls and were found to fit the pharmacophore. Finally, using the 3D pharmacophore developed in the present work to search 3D databases, over 50 classical benzodiazepines were found. Among them, were benzodiazepine ligands known to have an effect at the hyperphagic endpoint. In addition, the novel compounds also found in this search are promising therapeutic agents that could beneficially affect feeding behavior.


European Journal of Pharmacology | 2000

Determinants of recognition of ligands binding to benzodiazepine receptor/GABAA receptors initiating sedation

Danni L. Harris; Timothy M. DeLorey; Xiaohui He; James M. Cook; Gilda H. Loew

Complementary behavioral and computational studies of 21 structurally diverse, gamma-amino butyric acid (GABA)(A) benzodiazepine receptor ligands that influence spontaneous locomotor activity have been performed in this work. This behavioral endpoint is a well-accepted indicator of sedation particularly for GABA(A)/benzodiazepine receptor ligands. The goal of the work presented here is the identification and assessment of the minimum requirements for ligand recognition of GABA(A)/benzodiazepine receptors leading to activity at the sedation endpoint embedded in a common 3D pharmacophore for recognition. Using the experimental results, together with a systematic computational procedure developed in our laboratory, a five-component 3D pharmacophore for recognition of the GABA(A) receptor subtypes associated with the sedative behavioral response has been developed consisting of: two proton-accepting moieties, a hydrophobic region, a ring with polar moieties and an aromatic ring in a common geometric arrangement in all ligands having an effect at the sedation endpoint. To provide further evidence that the 3D pharmacophore developed embodied common requirements for receptor recognition, a pharmacophore analysis was performed for agonists, inverse agonists and antagonists separately. Each of the resulting pharmacophores contained the same five moieties at comparable distances to those found for the pharmacophore generated using all of them together. This result confirms that this pharmacophore constitutes a recognition pharmacophore representing required features in the overlapping portion of their binding sites. The reliability of this 3D pharmacophore was then assessed in several ways. First, it was determined that ligands that had no effect at the sedation endpoint did not comply with the pharmacophore requirements. Second, four benzodiazepine receptor ligands known to have an effect at the sedation endpoint, but not used in the pharmacophore development were found to satisfy the requirements of this pharmacophore. Third, the geometric and chemical requirements embedded in this pharmacophore were used to search 3D databases resulting in the identification of benzodiazepine receptor ligands known to affect sedation, but not included in the pharmacophore development. Finally, a 3D-quantitative structure analysis procedure (QSAR) model was developed based upon the ligands in the training set superimposed at their sedation pharmacophore points. The 3D-QSAR model shows good predictivity for binding of these ligands to receptor subtypes containing alpha1 but not alpha5 subunits. The pharmacophore developed for the sedation endpoint thus provides a predictive binding model for diverse ligand binding to alpha1 containing receptor subtypes.


ACS Chemical Neuroscience | 2015

Effect of 1-substitution on tetrahydroisoquinolines as selective antagonists for the orexin-1 receptor.

David A. Perrey; Nadezhda German; Ann M. Decker; David A. Thorn; Jun-Xu Li; Brian P. Gilmour; Brian F. Thomas; Danni L. Harris; Scott P. Runyon; Yanan Zhang

Selective blockade of the orexin-1 receptor (OX1) has been suggested as a potential approach to drug addiction therapy because of its role in modulating the brains reward system. We have recently reported a series of tetrahydroisoquinoline-based OX1 selective antagonists. Aimed at elucidating structure-activity relationship requirements in other regions of the molecule and further enhancing OX1 potency and selectivity, we have designed and synthesized a series of analogues bearing a variety of substituents at the 1-position of the tetrahydroisoquinoline. The results show that an optimally substituted benzyl group is required for activity at the OX1 receptor. Several compounds with improved potency and/or selectivity have been identified. When combined with structural modifications that were previously found to improve selectivity, we have identified compound 73 (RTIOX-251) with an apparent dissociation constant (Ke) of 16.1 nM at the OX1 receptor and >620-fold selectivity over the OX2 receptor. In vivo, compound 73 was shown to block the development of locomotor sensitization to cocaine in rats.


Bioorganic & Medicinal Chemistry | 2015

The importance of the 6- and 7-positions of tetrahydroisoquinolines as selective antagonists for the orexin 1 receptor

David A. Perrey; Ann M. Decker; Jun-Xu Li; Brian P. Gilmour; Brian F. Thomas; Danni L. Harris; Scott P. Runyon; Yanan Zhang

Selective antagonism of the orexin 1 (OX1) receptor has been proposed as a potential mechanism for treatment of drug addiction. We have previously reported studies on the structure-activity relationships of tetrahydroisoquinoline-based antagonists. In this report, we elucidated the respective role of the 6- and 7-substitutions by preparation of a series of either 6-substituted tetrahydroisoquinolines (with no 7-substituents) or vice versa. We found that 7-substituted tetrahydroisoquinolines showed potent antagonism of OX1, indicating that the 7-position is important for OX1 antagonism (10 c, Ke = 23.7 nM). While the 6-substituted analogs were generally inactive, several 6-amino compounds bearing ester groups showed reasonable potency (26 a, Ke = 427 nM). Further, we show evidence that suggests several compounds initially displaying insurmountable antagonism at the OX1 receptor are competitive antagonists with slow dissociation rates.


Bioorganic & Medicinal Chemistry | 2000

Development of a 3D pharmacophore for nonspecific ligand recognition of α1, α2, α3, α5, and α6 containing gabaA/benzodiazepine receptors

Marta Filizola; Danni L. Harris; Gilda H. Loew

Abstract Transfected cells containing GABAA/benzodiazepine receptors (BDZRs) have been utilized to systematically determine the affinity of ligands at α1, α2, α3, α5 and α6 subtypes in combination with β2 and γ2. All but a few of the ligands thus far studied have relatively high affinities for each of these α subtype receptors. Thus, these ligands must contain common stereochemical properties favorable for recognition by each of the subtype combinations. In the present work, such a common three-dimensional (3D) pharmacophore for recognition of α1, α2, α3, α5 and α6 containing GABAA/BDZRs types of receptors has been developed and assessed, using as a database receptor affinities measured in transfected cells for 27 diverse compounds. The 3D-recognition pharmacophore developed consists of three proton accepting groups, a hydrophobic group, and the centroid of an aromatic ring found in a common geometric arrangement in the 19 nonselective ligands used. Three tests were made to assess this pharmacophore: (i) Four low affinity compounds were used as negative controls, (ii) Four high affinity compounds, excluded from the pharmacophore development, were used as compounds for pharmacophore validation, (iii) The 3D pharmacophore was used to search 3D databases. The results of each of these types of assessments provided robust validation of the 3D pharmacophore. This 3D pharmacophore can now be used to discover novel nonselective ligands that could be activation selective at different behavioral end points. Additionally, it may serve as a guide in the design of more selective ligands, by determining if candidate ligands proposed for synthesis conform to this pharmacophore and selecting those that do not for further experimental assessment.


Bioorganic & Medicinal Chemistry Letters | 2015

Identification of N-{[6-chloro-4-(2,6-dimethoxyphenyl)quinazolin-2-yl]carbonyl}-l-leucine (NTRC-808), a novel nonpeptide chemotype selective for the neurotensin receptor type 2

James B. Thomas; Angela M. Giddings; Srinivas Olepu; Robert W. Wiethe; Danni L. Harris; Sanju Narayanan; Keith R. Warner; Philippe Sarret; Jean-Michel Longpré; Scott P. Runyon; Brian P. Gilmour

Compounds acting via the GPCR neurotensin receptor type 2 (NTS2) display analgesic effects in relevant animal models. Using a pharmacophore model based on known NT receptor nonpeptide compounds, we screened commercial databases to identify compounds that might possess activity at NTS2 receptor sites. Modification of our screening hit to include structural features known to be recognized by NTS1 and NTS2, led to the identification of the novel NTS2 selective nonpeptide, N-{[6-chloro-4-(2,6-dimethoxyphenyl)quinazolin-2-yl]carbonyl}-l-leucine (9). This compound is a potent partial agonist in the FLIPR assay with a profile of activity similar to that of the reference NTS2 analgesic nonpeptide levocabastine (5).


Journal of Medicinal Chemistry | 2018

Blocking Alcoholic Steatosis in Mice with a Peripherally Restricted Purine Antagonist of the Type 1 Cannabinoid Receptor

George S. Amato; Amruta Manke; Danni L. Harris; Robert W. Wiethe; Vineetha Vasukuttan; Rodney W. Snyder; Timothy W. Lefever; Ricardo A. Cortes; Yanan Zhang; Shaobin Wang; Scott P. Runyon; Rangan Maitra

Type 1 cannabinoid receptor (CB1) antagonists have demonstrated promise for the treatment of obesity, liver disease, metabolic syndrome, and dyslipidemias. However, the inhibition of CB1 receptors in the central nervous system can produce adverse effects, including depression, anxiety, and suicidal ideation. Efforts are now underway to produce peripherally restricted CB1 antagonists to circumvent CNS-associated undesirable effects. In this study, a series of analogues were explored in which the 4-aminopiperidine group of compound 2 was replaced with aryl- and heteroaryl-substituted piperazine groups both with and without a spacer. This resulted in mildly basic, potent antagonists of human CB1 (hCB1). The 2-chlorobenzyl piperazine, 25, was found to be potent ( Ki = 8 nM); to be >1000-fold selective for hCB1 over hCB2; to have no hERG liability; and to possess favorable ADME properties including high oral absorption and negligible CNS penetration. Compound 25 was tested in a mouse model of alcohol-induced liver steatosis and found to be efficacious. Taken together, 25 represents an exciting lead compound for further clinical development or refinement.

Collaboration


Dive into the Danni L. Harris's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanan Zhang

Research Triangle Park

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun-Xu Li

University at Buffalo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge