Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian R. Long is active.

Publication


Featured researches published by Brian R. Long.


Journal of Experimental Medicine | 2008

Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection

R. Brad Jones; Lishomwa C. Ndhlovu; Jason D. Barbour; Prameet M. Sheth; Aashish R. Jha; Brian R. Long; Jessica C. Wong; Malathy Satkunarajah; Marc Schweneker; Joan M. Chapman; Gabor Gyenes; Bahareh Vali; Martin D. Hyrcza; Feng Yun Yue; Colin Kovacs; Aref Sassi; Mona Loutfy; Roberta Halpenny; Desmond Persad; Gerald Spotts; Frederick Hecht; Tae-Wook Chun; Joseph M. McCune; Rupert Kaul; James M. Rini; Douglas F. Nixon; Mario A. Ostrowski

Progressive loss of T cell functionality is a hallmark of chronic infection with human immunodeficiency virus 1 (HIV-1). We have identified a novel population of dysfunctional T cells marked by surface expression of the glycoprotein Tim-3. The frequency of this population was increased in HIV-1–infected individuals to a mean of 49.4 ± SD 12.9% of CD8+ T cells expressing Tim-3 in HIV-1–infected chronic progressors versus 28.5 ± 6.8% in HIV-1–uninfected individuals. Levels of Tim-3 expression on T cells from HIV-1–infected inviduals correlated positively with HIV-1 viral load and CD38 expression and inversely with CD4+ T cell count. In progressive HIV-1 infection, Tim-3 expression was up-regulated on HIV-1–specific CD8+ T cells. Tim-3–expressing T cells failed to produce cytokine or proliferate in response to antigen and exhibited impaired Stat5, Erk1/2, and p38 signaling. Blocking the Tim-3 signaling pathway restored proliferation and enhanced cytokine production in HIV-1–specific T cells. Thus, Tim-3 represents a novel target for the therapeutic reversal of HIV-1–associated T cell dysfunction.


Blood | 2012

Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity

Lishomwa C. Ndhlovu; Sandra Lopez-Verges; Jason D. Barbour; Richard Bradley Jones; Aashish R. Jha; Brian R. Long; Schoeffler Ec; Tsuyoshi Fujita; Douglas F. Nixon; Lewis L. Lanier

Natural killer (NK) cells are innate lymphocytes that play an important role against viral infections and cancer. This effect is achieved through a complex mosaic of inhibitory and activating receptors expressed by NK cells that ultimately determine the magnitude of the NK-cell response. The T-cell immunoglobulin- and mucin domain-containing (Tim)-3 receptor was initially identified as a T-helper 1-specific type I membrane protein involved in regulating T-cell responses. Human NK cells transcribe the highest amounts of Tim-3 among lymphocytes. Tim-3 protein is expressed on essentially all mature CD56(dim)CD16(+) NK cells and is expressed heterogeneously in the immature CD56(bright)CD16(-) NK-cell subset in blood from healthy adults and in cord blood. Tim-3 expression was induced on CD56(bright)CD16(-) NK cells after stimulation with IL-15 or IL-12 and IL-18 in vitro, suggesting that Tim-3 is a maturation marker on NK cells. Whereas Tim-3 has been used to identify dysfunctional T cells, NK cells expressing high amounts of Tim-3 are fully responsive with respect to cytokine production and cytotoxicity. However, when Tim-3 was cross-linked with antibodies it suppressed NK cell-mediated cytotoxicity. These findings suggest that NK-cell responses may be negatively regulated when NK cells encounter target cells expressing cognate ligands of Tim-3.


Journal of Virology | 2008

Conferral of Enhanced Natural Killer Cell Function by KIR3DS1 in Early Human Immunodeficiency Virus Type 1 Infection

Brian R. Long; Lishomwa C. Ndhlovu; Jorge R. Oksenberg; Lewis L. Lanier; Frederick Hecht; Douglas F. Nixon; Jason D. Barbour

ABSTRACT A flurry of recent reports on the role of activating and inhibitory forms of the killer cell immunoglobulin-like receptors (KIR) in natural killer (NK) cell activity against human immunodeficiency virus type 1 (HIV-1) have yielded widely divergent results. The role of the activating NK receptor encoded by the KIR3DS1 allele and its putative ligands, members of the HLA class I Bw4Ile80 cluster, in early HIV-1 disease is controversial. We selected 60 treatment-naïve adults for study from the OPTIONS cohort of individuals with early HIV-1 infection in San Francisco. We performed NK cell functional assays measuring gamma interferon (IFN-γ) and CD107a expression by NK cells in the unstimulated state and after stimulation by the major histocompatibility complex class I-deficient 721.221 B-lymphoblastoid cell line. In addition, we measured CD38 expression (a T-cell activation marker) on T and NK cells. Persons who have at least one copy of the KIR3DS1 gene had higher IFN-γ and CD107a expression in the unstimulated state compared to those who do not possess this gene. After stimulation, both groups experienced a large induction of IFN-γ and CD107a, with KIR3DS1 carriers achieving a greater amount of IFN-γ expression. Differences in effector activity correlating with KIR3DS1 were not attributable to joint carriage of HLA Bw4Ile80 and KIR3DS1. We detected a partial but not complete dependence of KIR3DS1 on the members of B*58 supertype (B*57 and B*58) leading to higher NK cell function. Possessing KIR3DS1 was associated with lower expression of CD38 on both CD8+ T and NK cells and with a loss or weakening of the known strong associations between CD8+ T-cell expression of CD38 mean fluorescence intensity and the HIV-1 viral load. We observed that possessing KIR3DS1 was associated with higher NK cell effector functions in early HIV-1 disease, despite the absence of HLA Bw4Ile80, a putative ligand of KIR3DS1. Carriage of KIR3DS1 was associated with diminished CD8+ T-cell activation, as determined by expression of CD38, and a disruption of the traditional relationship between viral load and activation in HIV-1 disease, which may lead to better clinical outcomes for these individuals.


Virology | 2011

Superior human leukocyte reconstitution and susceptibility to vaginal HIV transmission in humanized NOD-scid IL-2Rγ(-/-) (NSG) BLT mice.

Cheryl A. Stoddart; Ekaterina Maidji; Sofiya A. Galkina; Galina Kosikova; Jose M. Rivera; Mary E. Moreno; Barbara Sloan; Pheroze Joshi; Brian R. Long

Humanized Bone marrow/Liver/Thymus (BLT) mice recapitulate the mucosal transmission of HIV, permitting study of early events in HIV pathogenesis and evaluation of preexposure prophylaxis methods to inhibit HIV transmission. Human hematopoiesis is reconstituted in NOD-scid mice by implantation of human fetal liver and thymus tissue to generate human T cells plus intravenous injection of autologous liver-derived CD34(+) hematopoietic stem cells to engraft the mouse bone marrow. In side-by-side comparisons, we show that NOD-scid mice homozygous for a deletion of the IL-2Rγ-chain (NOD-scid IL-2Rγ(-/-)) are far superior to NOD-scid mice in both their peripheral blood reconstitution with multiple classes of human leukocytes (e.g., a mean of 182 versus 14 CD4(+) T cells per μl 12 weeks after CD34(+) injection) and their susceptibility to intravaginal HIV exposure (84% versus 11% viremic mice at 4 weeks). These results should speed efforts to obtain preclinical animal efficacy data for new HIV drugs and microbicides.


Journal of Immunology | 2007

Natural Killer Cells in Perinatally HIV-1-Infected Children Exhibit Less Degranulation Compared to HIV-1-Exposed Uninfected Children and Their Expression of KIR2DL3, NKG2C, and NKp46 Correlates with Disease Severity

Wassim M. Ballan; Bien-Aimee N. Vu; Brian R. Long; Christopher P. Loo; Jakob Michaëlsson; Jason D. Barbour; Lewis L. Lanier; Andrew Wiznia; Jacobo Abadi; Glenn J. Fennelly; Michael G. Rosenberg; Douglas F. Nixon

NK cells play an integral role in the innate immune response by targeting virally infected and transformed cells with direct killing and providing help to adaptive responses through cytokine secretion. Whereas recent studies have focused on NK cells in HIV-1-infected adults, the role of NK cells in perinatally HIV-1-infected children is less studied. Using multiparametric flow cytometric analysis, we assessed the number, phenotype, and function of NK cell subsets in the peripheral blood of perinatally HIV-1-infected children on highly active antiretroviral therapy and compared them to perinatally exposed but uninfected children. We observed an increased frequency of NK cells expressing inhibitory killer Ig-like receptors in infected children. This difference existed despite comparable levels of total NK cells and NK cell subpopulations between the two groups. Additionally, NK cell subsets from infected children expressed, with and without stimulation, significantly lower levels of the degranulation marker CD107, which correlates with NK cell cytotoxicity. Lastly, increased expression of KIR2DL3, NKG2C, and NKp46 on NK cells correlated with decreased CD4+ T-lymphocyte percentage, an indicator of disease severity in HIV-1- infected children. Taken together, these results show that HIV-1-infected children retain a large population of cytotoxically dysfunctional NK cells relative to perinatally exposed uninfected children. This reduced function appears concurrently with distinct NK cell surface receptor expression and is associated with a loss of CD4+ T cells. This finding suggests that NK cells may have an important role in HIV-1 disease pathogenesis in HIV-1-infected children.


Blood | 2009

Functionally distinct subsets of human NK cells and monocyte/DC-like cells identified by coexpression of CD56, CD7, and CD4

Jeffrey M. Milush; Brian R. Long; Jennifer E. Snyder-Cappione; Amedeo Cappione; Vanessa A. York; Lishomwa C. Ndhlovu; Lewis L. Lanier; Jakob Michaëlsson; Douglas F. Nixon

The lack of natural killer (NK) cell-specific markers, as well as the overlap among several common surface antigens and functional properties, has obscured the delineation between NK cells and dendritic cells. Here, novel subsets of peripheral blood CD3/14/19(neg) NK cells and monocyte/dendritic cell (DC)-like cells were identified on the basis of CD7 and CD4 expression. Coexpression of CD7 and CD56 differentiates NK cells from CD56+ monocyte/DC-like cells, which lack CD7. In contrast to CD7+CD56+ NK cells, CD7(neg)CD56+ cells lack expression of NK cell-associated markers, but share commonalities in their expression of various monocyte/DC-associated markers. Using CD7, we observed approximately 60% of CD4+CD56+ cells were CD7(neg) cells, indicating the actual frequency of activated CD4+ NK cells is much lower in the blood than previously recognized. Functionally, only CD7+ NK cells secrete gamma interferon (IFNgamma) and degranulate after interleukin-12 (IL-12) plus IL-18 or K562 target cell stimulation. Furthermore, using CD7 to separate CD56+ NK cells and CD56+ myeloid cells, we demonstrate that unlike resting CD7+CD56+ NK cells, the CD7(neg)CD56+ myeloid cells stimulate a potent allogeneic response. Our data indicate that CD7 and CD56 coexpression discriminates NK cells from CD7(neg)CD56+ monocyte/DC-like cells, thereby improving our ability to study the intricacies of NK-cell subset phenotypes and functions in vivo.


Journal of Virology | 2012

Alpha Interferon and HIV Infection Cause Activation of Human T Cells in NSG-BLT Mice

Brian R. Long; Cheryl A. Stoddart

ABSTRACT The development of small animal models for the study of HIV transmission is important for evaluation of HIV prophylaxis and disease pathogenesis. In humanized bone marrow-liver-thymus (BLT) mice, hematopoiesis is reconstituted by implantation of human fetal liver and thymus tissue (Thy/Liv) plus intravenous injection of autologous liver-derived hematopoietic stem progenitor cells (HSPC). This results in reconstitution of human leukocytes in the mouse peripheral blood, lymphoid organs, and mucosal sites. NOD-scid interleukin-2 receptor-negative (IL-2Rγ−/−) (NSG)-BLT mice were inoculated intravaginally with HIV and were monitored for plasma viremia by a branched DNA assay 4 weeks later. T-cell activation was determined by expression of CD38 and HLA-DR on human CD4+ and CD8+ T cells in mouse peripheral blood at the time of inoculation and 4 weeks later. Additional BLT mice were treated with human alpha interferon 2b (IFN-α2b) (intron A) and assessed for T-cell activation. Productive HIV infection in BLT mice was associated with T-cell activation (increases in CD38 mean fluorescence intensity and both the frequency and absolute number of CD38+ HLA-DR+ T cells) that correlated strongly with plasma viral load and was most pronounced in the CD8+ T-cell compartment. This T-cell activation phenotype was recapitulated in NSG-BLT mice treated with intron A. HIV susceptibility correlated with the number of HSPC injected, yet a number of mice receiving the Thy/Liv implant alone, with no HSPC injection, were also susceptible to intravaginal HIV. These results are consistent with studies linking T-cell activation to progressive disease in humans and lend support for the use of NSG-BLT mice in studies of HIV pathogenesis.


Clinical and Vaccine Immunology | 2008

Elevated Frequency of Gamma Interferon-Producing NK Cells in Healthy Adults Vaccinated against Influenza Virus

Brian R. Long; Jakob Michaëlsson; Christopher P. Loo; Wassim M. Ballan; Bien-Aimee N. Vu; Frederick Hecht; Lewis L. Lanier; Joan M. Chapman; Douglas F. Nixon

ABSTRACT Recent studies indicate that innate immunity in influenza virus infection is an area of substantial importance for our understanding of influenza virus pathogenesis, yet our knowledge of the mechanisms controlling innate immunity remains limited. Further delineation of the roles of NK cells and innate immunity in viral infection may have important implications for the development of improved influenza virus vaccines. In this study, we evaluated the phenotype and function of NK and T lymphocytes, as well as influenza virus-specific immunoglobulin G production, prior to and following vaccination with the routinely administered trivalent influenza virus vaccine. We demonstrate influenza virus antigen-specific innate and adaptive cellular responses and evaluate changes in NK cell receptor expression over time. Our results demonstrate increased innate and adaptive cellular immune responses and show that NK cells are a significant source of gamma interferon (IFN-γ) following influenza virus vaccination. An increase in the frequency of IFN-γ-producing NK cells was observed in many subjects postvaccination. The subset distribution with respect to CD56dim and CD56bright NK cell subsets remained stable, as did the NK cell phenotype with respect to expression of cell surface activating and inhibitory receptors. These results may form the basis for further investigations of the role of NK cells in immunity to influenza.


PLOS ONE | 2007

HIV-1/HSV-2 Co-Infected Adults in Early HIV-1 Infection Have Elevated CD4+ T Cell Counts

Jason D. Barbour; Mariana M. Sauer; Elizabeth R. Sharp; Keith E. Garrison; Brian R. Long; Helena Tomiyama; Katia Cristina Bassichetto; Solange Oliveira; Maria Cristina Abbate; Douglas F. Nixon; Esper G. Kallas

Introduction HIV-1 is often acquired in the presence of pre-existing co-infections, such as Herpes Simplex Virus 2 (HSV-2). We examined the impact of HSV-2 status at the time of HIV-1 acquisition for its impact on subsequent clinical course, and total CD4+ T cell phenotypes. Methods We assessed the relationship of HSV-1/HSV-2 co-infection status on CD4+ T cell counts and HIV-1 RNA levels over time prior in a cohort of 186 treatment naïve adults identified during early HIV-1 infection. We assessed the activation and differentiation state of total CD4+ T cells at study entry by HSV-2 status. Results Of 186 recently HIV-1 infected persons, 101 (54 %) were sero-positive for HSV-2. There was no difference in initial CD8+ T cell count, or differences between the groups for age, gender, or race based on HSV-2 status. Persons with HIV-1/HSV-2 co-infection sustained higher CD4+ T cell counts over time (+69 cells/ul greater (SD = 33.7, p = 0.04) than those with HIV-1 infection alone (Figure 1), after adjustment for HIV-1 RNA levels (−57 cells per 1 log10 higher HIV-1 RNA, p<0.0001). We did not observe a relationship between HSV-2 infection status with plasma HIV-1 RNA levels over time. HSV-2 acquistion after HIV-1 acquisition had no impact on CD4+ count or viral load. We did not detect differences in CD4+ T cell activation or differentiation state by HSV-2+ status. Discussion We observed no effect of HSV-2 status on viral load. However, we did observe that treatment naïve, recently HIV-1 infected adults co-infected with HSV-2+ at the time of HIV-1 acquisition had higher CD4+ T cell counts over time. If verified in other cohorts, this result poses a striking paradox, and its public health implications are not immediately clear.


The Journal of Infectious Diseases | 2008

Immune Reconstitution of CD56dim NK Cells in Individuals with Primary HIV-1 Infection Treated with Interleukin-2

Jakob Michaëlsson; Brian R. Long; Christopher P. Loo; Lewis L. Lanier; Gerald Spotts; Frederick Hecht; Douglas F. Nixon

Natural killer (NK) cells are believed to play a role in human immunodeficiency virus type 1 (HIV-1) disease progression, and NK cell levels are reduced in individuals with chronic HIV-1 infection. Interleukin (IL)-2 therapy results in an expansion of CD4(+) T cells as well as NK cells; however, little is known about the detailed effects of IL-2 therapy on NK cells in HIV-1 infection in general and in early infection in particular. Here, we investigated the effects of combined IL-2 therapy and antiretroviral therapy (ART) on the number, frequency, phenotype, and interferon (IFN)-gamma production of NK cells in individuals with early HIV-1 infection. Patients randomized to receive combined ART and IL-2 therapy predominantly expanded CD56(dim) NK cells, and the expansion was greater than in patients randomized to receive ART alone. Importantly, NK cell receptor expression and IFN-gamma production were maintained over time. This reconstitution of NK cells may be useful in helping contain viremia if patients discontinue therapy or develop drug resistance.

Collaboration


Dive into the Brian R. Long's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jakob Michaëlsson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason D. Barbour

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lishomwa C. Ndhlovu

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge