Brian R. Morton
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brian R. Morton.
Evolution | 1996
Joshua R. Kohn; Sean W. Graham; Brian R. Morton; Jeff J. Doyle; Spencer C. H. Barrett
We reconstructed the phylogenetic history of Pontederiaceae using chloroplast DNA restriction‐site variation from approximately two‐thirds of the species in this family of aquatic monocotyledons. The molecular phylogeny was used to evaluate hypotheses concerning the evolution of reproductive characters associated with the breeding system. The family has four main genera, two of which (Eichhornia and Pontederia) have tristylous, predominantly outcrossing species, while two (Monochoria and Heteranthera) have enantiostylous taxa. Self‐incompatibility is restricted to some but not all tristylous species. In Eichhornia and Pontederia, predominantly selfing species with small monomorphic flowers (homostyly) have been hypothesized to result from the multiple breakdown of tristyly. Restriction‐site variation provided a well supported phylogeny of ingroup taxa, enabling the mapping of reproductive characters onto trees. Two contrasting optimization schemes were assessed, differing in the relative weights assigned to shifts in character states. The reconstructed sequence of floral character‐state change was used to assess competing hypotheses concerning the origin and breakdown of tristyly, and the relationships between tristylous and enantiostylous syndromes. Our results indicate that the class of optimization scheme used was the most critical factor in reconstructing character evolution. Despite some topological uncertainties and difficulty in reconstructing the primitive floral form in the family, several broad conclusions were possible when an unordered, unequally‐weighted optimization scheme was used: (1) tristyly originated either once or twice, while the occurrence of enantiostyly in Monochoria and Heteranthera was always found to have independent origins; (2) tristyly has repeatedly broken down leading to selfing, homostylous taxa; and (3) self‐incompatibility probably arose after the origin of floral trimorphism, a sequence of events that conflicts with some evolutionary models.
Systematic Biology | 1998
Sean W. Graham; Joshua R. Kohn; Brian R. Morton; James E. Eckenwalder; Spencer C. H. Barrett
A morphological data set and three sources of data from the chloroplast genome (two genes and a restriction site survey) were used to reconstruct the phylogenetic history of the pickerelweed family Pontederiaceae. The chloroplast data converged towards a single tree, presumably the true chloroplast phylogeny of the family. Unrooted trees estimated from each of the three chloroplast data sets were identical or extremely similar in shape to each other and mostly robustly supported. There was no evidence of significant heterogeneity among the data sets, and the few topological differences seen among unrooted trees from each chloroplast data set are probably artifacts of sampling error on short branches. Despite well-documented differences in rates of evolution for different characters in individual data sets, equally weighted parsimony permits accurate reconstructions of chloroplast relationships in Pontederiaceae. A separate morphology-based data set yielded trees that were very different from the chloroplast trees. Although there was substantial support from the morphological evidence for several major clades supported by chloroplast trees, most of the conflicting phylogenetic structure on the morphology trees was not robust. Nonetheless, several statistical tests of incongruence indicate significant heterogeneity between molecules and morphology. The source of this apparent incongruence appears to be a low ratio of phylogenetic signal to noise in the morphological data.
Journal of Molecular Evolution | 1998
Brian R. Morton
In the plant chloroplast genome the codon usage of the highly expressed psbA gene is unique and is adapted to the tRNA population, probably due to selection for translation efficiency. In this study the role of selection on codon usage in each of the fully sequenced chloroplast genomes, in addition to Chlamydomonas re-inhardtii, is investigated by measuring adaptation to this pattern of codon usage. A method is developed which tests selection on each gene individually by constructing sequences with the same amino acid composition as the gene and randomly assigning codons based on the nucleotide composition of noncoding regions of that genome. The codon bias of the actual gene is then compared to a distribution of random sequences. The data indicate that within the algae selection is strong in Cy-anophora paradoxa, affecting a majority of genes, of intermediate intensity in Odontella sinensis, and weaker in Porphyra purpurea and Euglena gracilis. In the plants, selection is found to be quite weak in Pinus thun-bergii and the angiosperms but there is evidence that an intermediate level of selection exists in the liverwort Marchanda polymorpha. The role of selection is then further investigated in two comparative studies. It is shown that average relative codon bias is correlated with expression level and that, despite saturation levels of substitution, there is a strong correlation among the algae genomes in the degree of codon bias of homologous genes. All of these data indicate that selection for translation efficiency plays a significant role in determining the codon bias of chloroplast genes but that it acts with different intensities in different lineages. In general it is stronger in the algae than the higher plants, but within the algae Euglena is found to have several unusual features which are noted. The factors that might be responsible for this variation in intensity among the various genomes are discussed.
Journal of Molecular Evolution | 1997
Brian R. Morton; Virginia M. Oberholzer; Michael T. Clegg
Abstract. Substitutions occurring in noncoding sequences of the plant chloroplast genome violate the independence of sites that is assumed by substitution models in molecular evolution. The probability that a substitution at a site is a transversion, as opposed to a transition, increases significantly with increasing A + T content of the two adjacent nucleotides. In the present study, this dependency of substitutions on local context is examined further in a number of noncoding regions from the chloroplast genome of members of the grass family (Poaceae). Two features were examined; the influence of specific neighboring bases, as opposed to the general A + T content, on transversion proportion and an influence on substitutions by nucleotides other than the two immediately adjacent to the site of substitution. In both cases, a significant effect was found. In the case of specific nucleotides, transversion proportion is significantly higher at sites with a pyrimidine immediately 5′ on either strand. Substitutions at sites of the type YNR, where N is the site of substitution, have the highest rate of transversion. This specific effect is secondary to the A + T content effect such that, in terms of proportion of substitutions that are transversions, the nucleotides are ranked T > A > C > G as to their effect when they are immediately 5′ to the site of substitution. In the case of nucleotides other than the immediate neighbors, a significant influence on substitution dynamics is observed in the case where the two neighboring bases are both A and/or T. Thus, substitutions are primarily, but not exclusively, influenced by the composition of the two nucleotides that are immediately adjacent. These results indicate that the pattern of molecular evolution of the plant chloroplast genome is extremely complex as a result of a variety of inter-site dependencies.
Genetics | 2005
Brian R. Morton; Irie V. Bi; Michael D. McMullen; Brandon S. Gaut
We examine variation in mutation dynamics across a single genome (Zea mays ssp. mays) in relation to regional and flanking base composition using a data set of 10,472 SNPs generated by resequencing 1776 transcribed regions. We report several relationships between flanking base composition and mutation pattern. The A + T content of the two sites immediately flanking the mutation site is correlated with rate, transition bias, and GC → AT pressure. We also observe a significant CpG effect, or increase in transition rate at CpG sites. At the regional level we find that the strength of the CpG effect is correlated with regional A + T content, ranging from a 1.7-fold increase in transition rate in relatively G + C-rich regions to a 2.6-fold increase in A + T-rich regions. We also observe a relationship between locus A + T content and GC → AT pressure. This regional effect is in opposition to the influence of the two immediate neighbors in that GC → AT pressure increases with increasing locus A + T content but decreases with increasing flanking base A + T content and may represent a relationship between genome location and mutation bias. The data indicate multiple context effects on mutations, resulting in significant variation in mutation dynamics across the genome.
Journal of Molecular Evolution | 2003
Brian R. Morton
The influence of local base composition on mutations in chloroplast DNA (cpDNA) is studied in detail and the resulting, empirically derived, mutation dynamics are used to analyze both base composition and codon usage bias. A 4 × 4 substitution matrix is generated for each of the 16 possible flanking base combinations (contexts) using 17,253 noncoding sites, 1309 of which are variable, from an alignment of three complete grass chloroplast genome sequences. It is shown that substitution bias at these sites is correlated with flanking base composition and that the A+T content of these flanking sites as well as the number of flanking pyrimidines on the same strand appears to have general influences on substitution properties. The context-dependent equilibrium base frequencies predicted from these matrices are then applied to two analyses. The first examines whether or not context dependency of mutations is sufficient to generate average compositional differences between noncoding cpDNA and silent sites of coding sequences. It is found that these two classes of sites exist, on average, in very different contexts and that the observed mutation dynamics are expected to generate significant differences in overall composition bias that are similar to the differences observed in cpDNA. Context dependency, however, cannot account for all of the observed differences: although silent sites in coding regions appear to be at the equilibrium predicted, noncoding cpDNA has a significantly lower A+T content than expected from its own substitution dynamics, possibly due to the influence of indels. The second study examines the codon usage of low-expression chloroplast genes. When context is accounted for, codon usage is very similar to what is predicted by the substitution dynamics of noncoding cpDNA. However, certain codon groups show significant deviation when followed by a purine in a manner suggesting some form of weak selection other than translation efficiency. Overall, the findings indicate that a full understanding of mutational dynamics is critical to understanding the role selection plays in generating composition bias and sequence structure.
BMC Genomics | 2012
Natalie Howlett; Katherine L. Dauber; Aditi Shukla; Brian R. Morton; John I. Glendinning; Elyssa Brent; Caroline Gleason; Fahmida Islam; Denisse Izquierdo; Sweta Sanghavi; Anika Afroz; Aanam Aslam; Marissa Barbaro; Rebekah Blutstein; Margarita Borovka; Brianna Desire; Ayala Elikhis; Qing Fan; Katherine Hoffman; Amy Huang; Dominique Russenberger Keefe; Sarah Lopatin; Samara Miller; Priyata Patel; Danielle Rizzini; Alyssa Robinson; Karimah Rokins; Aneta Turlik; Jennifer H. Mansfield
BackgroundInsects detect environmental chemicals via a large and rapidly evolving family of chemosensory receptor proteins. Although our understanding of the molecular genetic basis for Drosophila chemoreception has increased enormously in the last decade, similar understanding in other insects remains limited. The tobacco hornworm, Manduca sexta, has long been an important model for insect chemosensation, particularly from ecological, behavioral, and physiological standpoints. It is also a major agricultural pest on solanaceous crops. However, little sequence information and lack of genetic tools has prevented molecular genetic analysis in this species. The ability to connect molecular genetic mechanisms, including potential lineage-specific changes in chemosensory genes, to ecologically relevant behaviors and specializations in M. sexta would be greatly beneficial.ResultsHere, we sequenced transcriptomes from adult and larval chemosensory tissues and identified chemosensory genes based on sequence homology. We also used dsRNA feeding as a method to induce RNA interference in larval chemosensory tissues.ConclusionsWe report identification of new chemosensory receptor genes including 17 novel odorant receptors and one novel gustatory receptor. Further, we demonstrate that systemic RNA interference can be used in larval olfactory neurons to reduce expression of chemosensory receptor transcripts. Together, our results further the development of M. sexta as a model for functional analysis of insect chemosensation.
Journal of Molecular Evolution | 2000
Brian R. Morton; Bernadette G. So
Abstract. Highly expressed plastid genes display codon adaptation, which is defined as a bias toward a set of codons which are complementary to abundant tRNAs. This type of adaptation is similar to what is observed in highly expressed Escherichia coli genes and is probably the result of selection to increase translation efficiency. In the current work, the codon adaptation of plastid genes is studied with regard to three specific features that have been observed in E. coli and which may influence translation efficiency. These features are (1) a relatively low codon adaptation at the 5′ end of highly expressed genes, (2) an influence of neighboring codons on codon usage at a particular site (codon context), and (3) a correlation between the level of codon adaptation of a gene and its amino acid content. All three features are found in plastid genes. First, highly expressed plastid genes have a noticeable decrease in codon adaptation over the first 10–20 codons. Second, for the twofold degenerate NNY codon groups, highly expressed genes have an overall bias toward the NNC codon, but this is not observed when the 3′ neighboring base is a G. At these sites highly expressed genes are biased toward NNT instead of NNC. Third, plastid genes that have higher codon adaptations also tend to have an increased usage of amino acids with a high G + C content at the first two codon positions and GNN codons in particular. The correlation between codon adaptation and amino acid content exists separately for both cytosolic and membrane proteins and is not related to any obvious functional property. It is suggested that at certain sites selection discriminates between nonsynonymous codons based on translational, not functional, differences, with the result that the amino acid sequence of highly expressed proteins is partially influenced by selection for increased translation efficiency.
BMC Genomics | 2007
Richard A. Morton; Brian R. Morton
BackgroundMany bacterial chromosomes display nucleotide asymmetry, or skew, between the leading and lagging strands of replication. Mutational differences between these strands result in an overall pattern of skew that is centered about the origin of replication. Such a pattern could also arise from selection coupled with a bias for genes coded on the leading strand. The relative contributions of selection and mutation in producing compositional skew are largely unknown.ResultsWe describe a model to quantify the contribution of mutational differences between the leading and lagging strands in producing replication-induced skew. When the origin and terminus of replication are known, the model can be used to estimate the relative accumulation of G over C and of A over T on the leading strand due to replication effects in a chromosome with bidirectional replication arms. The model may also be implemented in a maximum likelihood framework to estimate the locations of origin and terminus. We find that our estimations for the origin and terminus agree very well with the location of genes that are thought to be associated with the replication origin. This indicates that our model provides an accurate, objective method of determining the replication arms and also provides support for the hypothesis that these genes represent an ancestral cluster of origin-associated genes.ConclusionThe model has several advantages over other methods of analyzing genome skew. First, it quantifies the role of mutation in generating skew so that its effect on composition, for example codon bias, can be assessed. Second, it provides an objective method for locating origin and terminus, one that is based on chromosome-wide accumulation of leading vs lagging strand nucleotide differences. Finally, the model has the potential to be utilized in a maximum likelihood framework in order to analyze the effect of chromosome rearrangements on nucleotide composition.
Journal of Molecular Evolution | 1996
Brian R. Morton
Plant chloroplast genes have a codon use that reflects the genome compositional bias of a high A+T content with the single exception of the highly translatedpsbA gene which codes for the photosystem II D1 protein. The codon usage of plantpsbA corresponds more closely to the limited tRNA population of the chloroplast and is very similar to the codon use observed in the chloroplast genes of the green algaChlamydomonas reinhardtii. This pattern of codon use may be an adaptation for increased translation efficiency. A correspondence between codon use of plantpsbA andChlamydomonas chloroplast genes and the tRNAs coded by the chloroplast genome, however, is not observed in all synonymous codon groups. It is shown here that the degree of correspondence between codon use and tRNA population in different synonymous groups is correlated with the second codon position composition. Synonymous groups with an A or T at the second codon position have a high representation of codons for which a complementary tRNA is coded by the chloroplast genome. Those with a G or C at the second position have an increased representation of codons that bind a chloroplast tRNA by wobble. It is proposed that the difference between synonymous groups in terms of codon adaptation to the tRNA population in plantpsbA andChlamydomonas chloroplast genes may be the result of differences in second position composition.