Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian VanScoy is active.

Publication


Featured researches published by Brian VanScoy.


Antimicrobial Agents and Chemotherapy | 2013

Pharmacokinetics-Pharmacodynamics of Tazobactam in Combination with Piperacillin in an In Vitro Infection Model

Brian VanScoy; Rodrigo E. Mendes; Anthony M. Nicasio; Mariana Castanheira; Catharine C. Bulik; Olanrewaju O. Okusanya; Sujata M. Bhavnani; Alan Forrest; Ronald N. Jones; Lawrence V. Friedrich; Judith N. Steenbergen; Paul G. Ambrose

ABSTRACT Despite β-lactamase inhibitors being available for clinical use for nearly 30 years, a paucity of data exists describing the pharmacokinetic-pharmacodynamic (PK-PD) determinants of efficacy for these agents. Herein, we describe dose fractionation studies designed to determine the exposure measure most predictive of tazobactam efficacy in combination with ceftolozane and the magnitude of this measure necessary for efficacy in a PK-PD in vitro infection model. The challenge organism panel was comprised of an isogenic CTX-M-15-producing Escherichia coli triplet set, genetically engineered to transcribe different levels of blaCTX-M-15. These recombinant strains exhibited ceftolozane MIC values of 4, 16, and 64 μg/ml representing low, moderate, and high levels of CTX-M-15, respectively. Different blaCTX-M-15 transcription levels were confirmed by relative quantitative real-time PCR (qRT-PCR) and β-lactamase hydrolytic assays. The exposure measure associated with efficacy was the percentage of the dosing interval that tazobactam concentrations remained above a threshold (%Time>threshold), regardless of enzyme expression (r2 = 0.938). The threshold concentrations identified were 0.05 μg/ml for low and moderate and 0.25 μg/ml for the high-β-lactamase expression strain constructs. The magnitudes of %Time>threshold for tazobactam associated with net bacterial stasis and a 1- and 2-log10 CFU reduction in bacteria at 24 h were approximately 35, 50, and 70%, respectively. These data provide an initial target tazobactam concentration-time profile and a paradigm to optimize tazobactam dosing when combined with ceftolozane.


Antimicrobial Agents and Chemotherapy | 2012

Pharmacodynamics of β-Lactamase Inhibition by NXL104 in Combination with Ceftaroline: Examining Organisms with Multiple Types of β-Lactamases

Arnold Louie; Mariana Castanheira; Weiguo Liu; Caroline Grasso; Ronald N. Jones; Gregory C. Williams; Ian A. Critchley; Dirk Thye; David W. Brown; Brian VanScoy; Robert Kulawy; George L. Drusano

ABSTRACT New broad-spectrum β-lactamases such as KPC enzymes and CTX-M-15 enzymes threaten to markedly reduce the utility of our armamentarium of β-lactam agents, even our most potent drugs, such as carbapenems. NXL104 is a broad-spectrum non-β-lactam β-lactamase inhibitor. In this evaluation, we examined organisms carrying defined β-lactamases and identified doses and schedules of NXL104 in combination with the new cephalosporin ceftaroline, which would maintain good bacterial cell kill and suppress resistance emergence for a clinically relevant period of 10 days in our hollow-fiber infection model. We examined three strains of Klebsiella pneumoniae and one isolate of Enterobacter cloacae. K. pneumoniae 27-908M carried KPC-2, SHV-27, and TEM-1 β-lactamases. Its isogenic mutant, K. pneumoniae 4207J, was “cured” of the plasmid expressing the KPC-2 enzyme. K. pneumoniae 24-1318A carried a CTX-M-15 enzyme, and E. cloacae 2-77C expressed a stably derepressed AmpC chromosomal β-lactamase. Dose-ranging experiments for NXL104 administered as a continuous infusion with ceftaroline at 600 mg every 8 h allowed identification of a 24-h area under the concentration-time curve (AUC) for NXL104 that mediated bactericidal activity and resistance suppression. Dose fractionation experiments identified that “time > threshold” was the pharmacodynamic index linked to cell kill and resistance suppression. Given these results, we conclude that NXL104 combined with ceftaroline on an 8-hourly administration schedule would be optimal for circumstances in which highly resistant pathogens are likely to be encountered. This combination dosing regimen should allow for optimal bacterial cell kill (highest likelihood of successful clinical outcome) and the suppression of resistance emergence.


Antimicrobial Agents and Chemotherapy | 2013

Pharmacological Basis of β-Lactamase Inhibitor Therapeutics: Tazobactam in Combination with Ceftolozane

Brian VanScoy; Rodrigo E. Mendes; Jennifer McCauley; Sujata M. Bhavnani; Catharine C. Bulik; Olanrewaju O. Okusanya; Alan Forrest; Ronald N. Jones; Lawrence V. Friedrich; Judith N. Steenbergen; Paul G. Ambrose

ABSTRACT We recently investigated the pharmacokinetics-pharmacodynamics (PK-PD) of tazobactam in combination with ceftolozane against an isogenic CTX-M-15-producing Escherichia coli triplet set, genetically engineered to transcribe different levels of blaCTX-M-15. The percentage of the dosing interval that tazobactam concentrations remained above a threshold (%Time>threshold) was identified as the PK-PD exposure measure that was most closely associated with efficacy. Moreover, the tazobactam concentration was dependent upon the enzyme transcription level. Given that the aforementioned strains were genetically engineered to transcribe a single β-lactamase enzyme and that clinical isolates typically produce multiple β-lactamase enzymes with various transcription levels, it is likely that the tazobactam threshold concentration is isolate/enzyme dependent. Our first objective was to characterize the relationship between the tazobactam %Time>threshold in combination with ceftolozane and efficacy using clinical isolates in an in vitro PK-PD infection model. Our second objective was to identify a translational relationship that would allow for the comodeling across clinical isolates. The initial challenge panel included four well-characterized β-lactamase-producing E. coli strains with variable enzyme expression and other resistance determinants. As evidenced by r2 values of ranging from 0.90 to 0.99 for each clinical isolate, the observed data were well described by fitted functions describing the relationship between the tazobactam %Time>threshold and change in log10 CFU from baseline; however, the data from the four isolates did not comodel well. The threshold concentration identified for each isolate ranged from 0.5 to 4 mg/liter. We identified an enabling translational relationship for the tazobactam threshold that allowed comodeling of all four clinical isolates, which was the product of the individual isolates ceftolozane-tazobactam MIC value and 0.5. As evidenced by an r2 value of 0.90, the transformed data were well described by a fitted function describing the relationship between tazobactam %Time>threshold and change in log10 CFU from baseline. Due to these findings, the challenge panel was expanded to include three well-characterized β-lactamase-producing Klebsiella pneumoniae strains with variable enzyme expression and other resistance determinants. The translational relationship for the tazobactam threshold that allowed for the comodeling of the four E. coli isolates performed well for the expanded data set (seven isolates in total; four E. coli and three K. pneumoniae), as evidenced by an r2 value of 0.84. This simple translational relationship is especially useful as it is directly linked to in vitro susceptibility test results, which are used to guide the clinicians choice of drug and dosing regimen.


Antimicrobial Agents and Chemotherapy | 2012

Resistance Emergence Mechanism and Mechanism of Resistance Suppression by Tobramycin for Cefepime for Pseudomonas aeruginosa

George L. Drusano; Robert A. Bonomo; Nadzeya Bahniuk; Juergen Bulitta; Brian VanScoy; Holland DeFiglio; Steven Fikes; David W. Brown; Sarah M. Drawz; Robert Kulawy; Arnold Louie

ABSTRACT The panoply of resistance mechanisms in Pseudomonas aeruginosa makes resistance suppression difficult. Defining optimal regimens is critical. Cefepime is a cephalosporin whose 3′ side chain provides some stability against AmpC β-lactamases. We examined the activity of cefepime against P. aeruginosa wild-type strain PAO1 and its isogenic AmpC stably derepressed mutant in our hollow-fiber infection model. Dose-ranging studies demonstrated complete failure with resistance emergence (both isolates). Inoculum range studies demonstrated ultimate failure for all inocula. Lower inocula failed last (10 days to 2 weeks). Addition of a β-lactamase inhibitor suppressed resistance even with the stably derepressed isolate. Tobramycin combination studies demonstrated resistance suppression in both the wild-type and the stably derepressed isolates. Quantitating the RNA message by quantitative PCR demonstrated that tobramycin decreased the message relative to that in cefepime-alone experiments. Western blotting with AmpC-specific antibody for P. aeruginosa demonstrated decreased expression. We concluded that suppression of β-lactamase expression by tobramycin (a protein synthesis inhibitor) was at least part of the mechanism behind resistance suppression. Monte Carlo simulation demonstrated that a regimen of 2 g of cefepime every 8 h plus 7 mg/kg of body weight of tobramycin daily would provide robust resistance suppression for Pseudomonas isolates with cefepime MIC values up to 8 mg/liter and tobramycin MIC values up to 1 mg/liter. For P. aeruginosa resistance suppression, combination therapy is critical.


Antimicrobial Agents and Chemotherapy | 2008

Use of an In Vitro Pharmacodynamic Model To Derive a Linezolid Regimen That Optimizes Bacterial Kill and Prevents Emergence of Resistance in Bacillus anthracis

Arnold Louie; Henry S. Heine; K. Kim; David L. Brown; Brian VanScoy; Weiguo Liu; Martina Kinzig-Schippers; Fritz Sörgel; George L. Drusano

ABSTRACT Simulating the average non-protein-bound (free) human serum drug concentration-time profiles for linezolid in an in vitro pharmacodynamic model, we characterized the pharmacodynamic parameter(s) of linezolid predictive of kill and for prevention of resistance in Bacillus anthracis. In 10-day dose-ranging studies, the average exposure for ≥700 mg of linezolid given once daily (QD) resulted in >3-log CFU/ml declines in B. anthracis without resistance selection. Linezolid at ≤600 mg QD amplified for resistance. With twice-daily (q12h) dosing, linezolid at ≥500 mg q12 h was required for resistance prevention. In dose fractionation studies, killing of B. anthracis was predicted by the area under the time-concentration curve (AUC)/MIC ratio. However, resistance prevention was linked to the maximum serum drug concentration (Cmax)/MIC ratio. Monte Carlo simulations predicted that linezolid at 1,100 mg QD would produce in 96.7% of human subjects a free 24-h AUC that would match or exceed the average 24-h AUC of 78.5 mg·h/liter generated by linezolid at 700 mg QD while reproducing the shape of the concentration-time profile for this pharmacodynamically optimized regimen. However, linezolid at 700 mg q12h (cumulative daily dose of 1,400 mg) would produce an exposure that would equal or exceed the average free 24-h AUC of 90 mg·h/liter generated by linezolid at 500 mg q12h in 93.8% of human subjects. In conclusion, in our in vitro studies, the QD-administered, pharmacodynamically optimized regimen for linezolid killed drug-susceptible B. anthracis and prevented resistance emergence at lower dosages than q12h regimens. The lower dosage for the pharmacodynamically optimized regimen may decrease drug toxicity. Also, the QD administration schedule may improve patient compliance.


Antimicrobial Agents and Chemotherapy | 2011

Saturability of Granulocyte Kill of Pseudomonas aeruginosa in a Murine Model of Pneumonia

George L. Drusano; Brian VanScoy; Weiguo Liu; Steven Fikes; David W. Brown; Arnold Louie

ABSTRACT Outcomes for patients with dense bacterial burdens, such as ventilator-associated pneumonia (VAP) patients, are often critically influenced by the adequacy of antimicrobial chemotherapy and by the response of the immune system, particularly the granulocytes. Little information is available about the quantitation of kill of organisms over time by granulocytes. In this investigation, we examined the impact of the baseline bacterial burden on the ability of granulocytes alone (without chemotherapy) to keep the number of organisms in check or to kill them over a 24-h period. Pseudomonas aeruginosa ATCC 27853 was the study organism, and we employed a murine pneumonia model (granulocyte replete) for the study. We found that the ability of the immune system to kill P. aeruginosa was saturable. The burden at which the system was half saturated was 2.15 × 106 ± 2.66 × 106 CFU/g. Burdens greater than 107 CFU/g demonstrated net growth over 24 h. These findings suggest the need for aggressive chemotherapy early in the treatment of VAP to keep the burden from saturating the granulocytes. This should optimize the outcome for these seriously infected patients.


Antimicrobial Agents and Chemotherapy | 2013

Relationship between Ceftolozane/Tazobactam Exposure and Drug-Resistance Amplification in a Hollow-Fiber Infection Model

Brian VanScoy; Rodrigo E. Mendes; Mariana Castanheira; Jennifer McCauley; Sujata M. Bhavnani; Alan Forrest; Ronald N. Jones; Olanrewaju O. Okusanya; Lawrence V. Friedrich; Judith N. Steenbergen; Paul G. Ambrose

ABSTRACT In an era of rapidly emerging antimicrobial-resistant bacteria, it is critical to understand the importance of the relationships among drug exposure, duration of therapy, and selection of drug resistance. Herein we describe the results of studies designed to determine the ceftolozane-tazobactam exposure necessary to prevent the amplification of drug-resistant bacterial subpopulations in a hollow-fiber infection model. The challenge isolate was a CTX-M-15-producing Escherichia coli isolate genetically engineered to transcribe a moderate level of blaCTX-M-15. This organisms blaCTX-M-15 transcription level was confirmed by relative quantitative reverse transcription-PCR (qRT-PCR), β-lactamase hydrolytic assays, and a ceftolozane MIC value of 16 mg/liter. In these studies, the experimental duration (10 days), ceftolozane-tazobactam dose ratio (2:1), and dosing interval (every 8 h) were selected to approximate those expected to be used clinically. The ceftolozane-tazobactam doses studied ranged from 125-62.5 to 1,500-750 mg. Negative- and positive-control arms included no treatment and piperacillin-tazobactam at 4.5 g every 6 h, respectively. An inverted-U-shaped function best described the relationship between bacterial drug resistance amplification and drug exposure. The least- and most-intensive ceftolozane-tazobactam dosing regimens, i.e., 125-62.5, 750-375, 1,000-500, and 1,500-750 mg, did not amplify drug resistance, while drug resistance amplification was observed with intermediate-intensity dosing regimens (250-125 and 500-250 mg). For the intermediate-intensity ceftolozane-tazobactam dosing regimens, the drug-resistant subpopulation became the dominant population by days 4 to 6. The more-intensive ceftolozane-tazobactam dosing regimens (750-375, 1,000-500, and 1,500-750 mg) not only prevented drug resistance amplification but also virtually sterilized the model system. These data support the selection of ceftolozane-tazobactam dosing regimens that minimize the potential for on-therapy drug resistance amplification.


Antimicrobial Agents and Chemotherapy | 2011

Meropenem Penetration into Epithelial Lining Fluid in Mice and Humans and Delineation of Exposure Targets

George L. Drusano; Thomas P. Lodise; David Melnick; W. Liu; Antonio Oliver; A. Mena; Brian VanScoy; Arnold Louie

ABSTRACT Pseudomonas aeruginosa pneumonia remains a most-difficult-to-treat nosocomial bacterial infection. We used mathematical modeling to identify drug exposure targets for meropenem in the epithelial lining fluid (ELF) of mice with Pseudomonas pneumonia driving substantial [2 to 3 log10 (CFU/g)] killing and which suppressed resistant subpopulation amplification. We bridged to humans to estimate the frequency with which the largest licensed meropenem dose would achieve these exposure targets. Cell kills of 2 and 3 log10 (CFU/g) and resistant subpopulation suppression were mediated by achieving time > MIC in ELF of 32%, 50%, and 50%. Substantial variability in meropenems ability to penetrate into ELF of both mice and humans was observed. Penetration variability and high exposure targets combined to prevent even the largest licensed meropenem dose from achieving the targets at an acceptable frequency. Even a highly potent agent such as meropenem does not adequately suppress resistant subpopulation amplification as single-agent therapy administered at maximal dose and optimal schedule. Combination chemotherapy is likely required in humans if we are to minimize resistance emergence in Pseudomonas aeruginosa pneumonia. This combination needs evaluation both in the murine pneumonia model and in humans.


Antimicrobial Agents and Chemotherapy | 2015

Exploration of the Pharmacokinetic-Pharmacodynamic Relationships for Fosfomycin Efficacy Using an In Vitro Infection Model

Brian VanScoy; Jennifer McCauley; Evelyn J. Ellis-Grosse; Olanrewaju O. Okusanya; Sujata M. Bhavnani; Alan Forrest; Paul G. Ambrose

ABSTRACT Fosfomycin, a phosphonic class antibiotic with a broad spectrum of antibacterial activity, has been used outside the United States since the early 1970s for the treatment of a variety of infections. In the United States, an oral (tromethamine salt) formulation is used for uncomplicated urinary tract infections. Recently, there has been interest in the use of an intravenous solution (ZTI-01) for the treatment of a broad range of infections associated with multidrug-resistant bacteria. In this era of multidrug-resistant bacteria with few treatment options, it is critical to understand the pharmacokinetic-pharmacodynamic (PK-PD) determinants for fosfomycin efficacy. Since such data are limited, a one-compartment in vitro infection model was used to determine the PK-PD index associated with efficacy and the magnitude of this measure necessary for various levels of effect. One challenge isolate (Escherichia coli ATCC 25922, for which the fosfomycin agar MIC is 0.5 mg/liter and the broth microdilution MIC is 1 mg/liter) was evaluated in the dose fractionation studies, and two additional clinical E. coli isolates were evaluated in the dose-ranging studies. Mutation frequency studies indicated the presence of an inherently fosfomycin resistant E. coli subpopulation (agar MIC = 32 to 64 mg/liter) within the standard starting inoculum of a susceptibility test. Due to the presence of this resistant subpopulation, we identified the percentage of the dosing interval that drug concentrations were above the inherent resistance inhibitory concentration found at baseline to be the PK-PD index associated with efficacy (r2 = 0.777). The magnitudes of this PK-PD index associated with net bacterial stasis and 1- and 2-log10 CFU/ml reductions from baseline at 24 h were 11.9, 20.9, and 32.8, respectively. These data provide useful information for modernizing and optimizing ZTI-01 dosing regimens for further study.


Antimicrobial Agents and Chemotherapy | 2014

Relationship between Ceftolozane-Tazobactam Exposure and Selection for Pseudomonas aeruginosa Resistance in a Hollow-Fiber Infection Model

Brian VanScoy; Rodrigo E. Mendes; Mariana Castanheira; Jennifer McCauley; Sujata M. Bhavnani; Ronald N. Jones; Lawrence V. Friedrich; Judith N. Steenbergen; Paul G. Ambrose

ABSTRACT It is important to understand the relationship between antibiotic exposure and the selection of drug resistance in the context of therapy exposure. We sought to identify the ceftolozane-tazobactam exposure necessary to prevent the amplification of drug-resistant bacterial subpopulations in a hollow-fiber infection model. Two Pseudomonas aeruginosa challenge isolates were selected for study, a wild-type ATCC strain (ceftolozane-tazobactam MIC, 0.5 mg/liter) and a clinical isolate (ceftolozane-tazobactam MIC, 4 mg/liter). The experiment duration was 10 days, and the ceftolozane-tazobactam dose ratio (2:1) and dosing interval (every 8 h) were selected to approximate those expected to be used clinically. The studied ceftolozane-tazobactam dosing regimens ranged from 62.5/31.25 to 2,000/1,000 mg per dose in step fold dilutions. Negative-control arms included no treatment and tazobactam at 500 mg every 8 h. Positive-control arms included ceftolozane at 1 g every 8 h and piperacillin-tazobactam dosed at 4.5 g every 6 h. For the wild-type ATCC strain, resistance was not selected by any ceftolozane-tazobactam regimen evaluated. For the clinical isolate, an inverted-U-shaped function best described the relationship between the amplification of a drug-resistant subpopulation and drug exposure. The least (62.5/31.25 mg) and most (2,000/1,000 mg) intensive ceftolozane-tazobactam dosing regimens did not select for drug resistance. Drug resistance selection was observed with intermediately intensive dosing regimens (125/62.5 through 1,000/500 mg). For the intermediately intensive ceftolozane-tazobactam dosing regimens, the duration until the selection for drug resistance increased with dose regimen intensity. These data support the selection of ceftolozane-tazobactam dosing regimens that minimize the potential for on-therapy drug resistance selection.

Collaboration


Dive into the Brian VanScoy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weiguo Liu

Albany Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Forrest

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge