Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian W. Booth is active.

Publication


Featured researches published by Brian W. Booth.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo

Corinne A. Boulanger; David L. Mack; Brian W. Booth; Gilbert H. Smith

Previously, we characterized a parity-induced mammary epithelial cell population that possessed the properties of pluripotency and self-renewal upon transplantation. These cells were lineally marked by the expression of β-galactosidase (LacZ) as a result of mammary-specific activation of a reporter gene through Cre-lox recombination during pregnancy. We used this experimental model to determine whether testicular cells would alter their cell fate upon interaction with the mammary gland microenvironment during pregnancy, lactation, and involution. Adult testicular cells, isolated from seminiferous tubules, were mixed with limiting dilutions of dispersed mammary epithelial cells and injected into epithelium-divested mammary fat pads. The host mice were bred 6–8 weeks later and examined 20–30 days postinvolution. This approach allowed for the growth of mammary tissue from the injected cells and transient activation of the whey acidic protein promoter-Cre gene during pregnancy and lactation, leading to Cre-lox recombination and constitutive expression of LacZ from its promoter. Here we show that cells from adult seminiferous tubules interact with mammary epithelial cells during regeneration of the gland. They adopt mammary epithelial progenitor cell properties, including self-renewal and the production of cell progeny, which differentiate into functional mammary epithelial cells. Our results provide evidence for the ascendancy of the tissue microenvironment over the intrinsic nature of cells from an alternative adult tissue.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The mammary microenvironment alters the differentiation repertoire of neural stem cells

Brian W. Booth; David L. Mack; Andreas Androutsellis-Theotokis; Ronald D. G. McKay; Corinne A. Boulanger; Gilbert H. Smith

A fundamental issue in stem cell biology is whether adult somatic stem cells are capable of accessing alternate tissue sites and continue functioning as stem cells in the new microenvironment. To address this issue relative to neurogenic stem cells in the mouse mammary gland microenvironment, we mixed wild-type mammary epithelial cells (MECs) with bona fide neural stem cells (NSCs) isolated from WAP-Cre/Rosa26R mice and inoculated them into cleared fat pads of immunocompromised females. Hosts were bred 6–8 weeks later and examined postinvolution. This allowed for mammary tissue growth, transient activation of the WAP-Cre gene, recombination, and constitutive expression of LacZ. The NSCs and their progeny contributed to mammary epithelial growth during ductal morphogenesis, and the Rosa26-LacZ reporter gene was activated by WAP-Cre expression during pregnancy. Some NSC-derived LacZ+ cells expressed mammary-specific functions, including milk protein synthesis, whereas others adopted myoepithelial cell fates. Thus, NSCs and their progeny enter mammary epithelium–specific niches and adopt the function of similarly endowed mammary cells. This result supports the conclusion that tissue-specific signals emanating from the stroma and from the differentiated somatic cells of the mouse mammary gland can redirect the NSCs to produce cellular progeny committed to MEC fates.


Breast Cancer Research | 2006

Estrogen receptor-α and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands

Brian W. Booth; Gilbert H. Smith

IntroductionStem cells of somatic tissues are hypothesized to protect themselves from mutation and cancer risk through a process of selective segregation of their template DNA strands during asymmetric division. Mouse mammary epithelium contains label-retaining epithelial cells that divide asymmetrically and retain their template DNA.MethodImmunohistochemistry was used in murine mammary glands that had been labeled with [3H]thymidine during allometric growth to investigate the co-expression of DNA label retention and estrogen receptor (ER)-α or progesterone receptor (PR). Using the same methods, we investigated the co-localization of [3H]thymidine and ER-α or PR in mammary tissue from mice that had received treatment with estrogen, progesterone, and prolactin subsequent to a long chase period to identify label-retaining cells.ResultsLabel-retaining epithelial cells (LRECs) comprised approximately 2.0% of the entire mammary epithelium. ER-α-positive and PR-positive cells represented about 30–40% of the LREC subpopulation. Administration of estrogen, progesterone, and prolactin altered the percentage of LRECs expressing ER-α.ConclusionThe results presented here support the premise that there is a subpopulation of LRECs in the murine mammary gland that is positive for ER-α and/or PR. This suggests that certain mammary LRECs (potentially stem cells) remain stably positive for these receptors, raising the possibility that LRECs comprise a hierarchy of asymmetrically cycling mammary stem/progenitor cells that are distinguished by the presence or absence of nuclear steroid receptor expression.


Journal of Mammary Gland Biology and Neoplasia | 2010

ErbB/EGF Signaling and EMT in Mammary Development and Breast Cancer

Katharine M. Hardy; Brian W. Booth; Mary J.C. Hendrix; David S. Salomon; Luigi Strizzi

Activation of the ErbB family of receptor tyrosine kinases via cognate Epidermal Growth Factor (EGF)-like peptide ligands constitutes a major group of related signaling pathways that control proliferation, survival, angiogenesis and metastasis of breast cancer. In this respect, clinical trials with various ErbB receptor blocking antibodies and specific tyrosine kinase inhibitors have proven to be partially efficacious in the treatment of this heterogeneous disease. Induction of an embryonic program of epithelial-to-mesenchymal transition (EMT) in breast cancer, whereupon epithelial tumor cells convert to a more mesenchymal-like phenotype, facilitates the migration, intravasation, and extravasation of tumor cells during metastasis. Breast cancers which exhibit properties of EMT are highly aggressive and resistant to therapy. Activation of ErbB signaling can regulate EMT-associated invasion and migration in normal and malignant mammary epithelial cells, as well as modulating discrete stages of mammary gland development. The purpose of this review is to summarize current information regarding the role of ErbB signaling in aspects of EMT that influence epithelial cell plasticity during mammary gland development and tumorigenesis. How this information may contribute to the improvement of therapeutic approaches in breast cancer will also be addressed.


Cancer Research | 2010

Reprogramming human cancer cells in the mouse mammary gland.

Karen M. Bussard; Corinne A. Boulanger; Brian W. Booth; Robert D. Bruno; Gilbert H. Smith

The tissue microenvironment directs stem/progenitor cell behavior. Cancer cells are also influenced by the microenvironment. It has been shown that, when placed into blastocysts, cancer cells respond to embryonic cues and differentiate according to the tissue type encountered during ontological development. Previously, we showed that the mouse mammary gland was capable of redirecting adult mouse testicular and neural stem/progenitor cells toward a mammary epithelial cell fate during gland regeneration. Here, we report that human embryonal carcinoma cells proliferate and produce differentiated mammary epithelial cell progeny when mixed with mouse mammary epithelial cells and inoculated into the epithelium-free mammary fat pads of athymic nude mice. Fluorescence in situ hybridization confirmed the presence of human cell progeny in the mammary outgrowths for human centromeric DNA, as well as immunochemistry for human-specific breast epithelial cytokeratins and human-specific milk proteins in impregnated transplant hosts. It was found that the number of human cells increased by 66- to 660-fold during mammary epithelial growth and expansion as determined by human cytokeratin expression. All features found in primary outgrowths were recapitulated in the secondary outgrowths from chimeric implants. These results show that human embryonal carcinoma-derived progeny interact with mouse mammary cells during mammary gland regeneration and are directed to differentiate into cells that exhibit diverse mammary epithelial cell phenotypes. This is the first demonstration that human cells are capable of recognizing the signals generated by the mouse mammary gland microenvironment present during gland regeneration in vivo.


Oncogene | 2011

The normal mammary microenvironment suppresses the tumorigenic phenotype of mouse mammary tumor virus-neu-transformed mammary tumor cells

Brian W. Booth; Corinne A. Boulanger; Lisa H. Anderson; Gilbert H. Smith

The microenvironment of the mammary gland has been shown to exert a deterministic control over cells from different normal organs during murine mammary gland regeneration in transplantation studies. When mouse mammary tumor virus (MMTV)-neu-induced tumor cells were mixed with normal mammary epithelial cells (MECs) in a dilution series and inoculated into epithelium-free mammary fat pads, they were redirected to non-carcinogenic cell fates by interaction with untransformed MECs during regenerative growth. In the presence of non-transformed MECs (50:1), tumor cells interacted with MECs to generate functional chimeric outgrowths. When injected alone, tumor cells invariably produced tumors. Here, the normal microenvironment redirects MMTV-neu-transformed tumorigenic cells to participate in the regeneration of a normal, functional mammary gland. In addition, the redirected tumor cells show the capacity to differentiate into normal mammary cell types, including luminal, myoepithelial and secretory. The results indicate that signals emanating from a normal mammary microenvironment, comprised of stromal, epithelial and host-mediated signals, combine to suppress the cancer phenotype during glandular regeneration. Clarification of these signals offers improved therapeutic possibilities for the control of mammary cancer growth.


Journal of Cellular Physiology | 2007

Alveolar progenitor cells develop in mouse mammary glands independent of pregnancy and lactation.

Brian W. Booth; Corinne A. Boulanger; Gilbert H. Smith

We have previously described pluripotent, parity‐induced mammary epithelial cells (PI‐MEC) marked by Rosa26‐lacZ expression in the mammary glands of parous females. PI‐MEC act as lobule‐limited epithelial stem/progenitor cells. To determine whether parity is necessary to generate PI‐MEC, we incubated mammary explant cultures from virgin mice in vitro with insulin alone (I), hydrocortisone alone (H), prolactin alone (Prl), or a combination of these lactogenic hormones (IHPrl). Insulin alone activated the WAP‐Cre gene. Hydrocortisone and prolactin alone did not. Any combination of hormones that included insulin was effective. Only I, H and Prl together were able to induce secretory differentiation and milk protein synthesis. In addition, EGF, IGF‐2 and IGF‐1 added individually produced activated (lacZ+) PI‐MEC in explant cultures. Neither estrogen nor progesterone induced WAP‐Cre expression in the explants. None of these positive initiators of WAP‐Cre expression in PI‐MEC were effective in mammospheres or two‐dimensional cultures of mammary epithelium, indicating the indispensability of epithelial–stromal interaction in PI‐MEC activation. Like PI‐MEC, lacZ+ cells from virgin explants proliferated and contributed progeny to mammospheres in vitro and to epithelial outgrowths in vivo after transplantation. LacZ+ cells induced in virgin mouse mammary explants were multipotent (like PI‐MEC) in impregnated hosts producing lacZ+ mammary alveolar structures comprised of both myoepithelial and luminal progeny. These data demonstrate PI‐MEC, a mammary epithelial sub‐population of lobule‐limited progenitor cells, are present in nulliparous female mice before parity and, like the PI‐MEC observed following parity, are capable of proliferation, self‐renewal and the capacity to produce progeny of diverse epithelial cell fates. J. Cell. Physiol. 212:729–736, 2007.


Experimental Cell Research | 2010

Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics

Brian W. Booth; Corinne A. Boulanger; Lisa H. Anderson; Lucia Jimenez-Rojo; Cathrin Brisken; Gilbert H. Smith

Amphiregulin (AREG), a ligand for epidermal growth factor receptor, is required for mammary gland ductal morphogenesis and mediates estrogen actions in vivo, emerging as an essential growth factor during mammary gland growth and differentiation. The COMMA-D beta-geo (CDbetageo) mouse mammary cell line displays characteristics of normal mammary progenitor cells including the ability to regenerate a mammary gland when transplanted into the cleared fat pad of a juvenile mouse, nuclear label retention, and the capacity to form anchorage-independent mammospheres. We demonstrate that AREG is essential for formation of floating mammospheres by CDbetageo cells and that the mitogen activated protein kinase signaling pathway is involved in AREG-mediated mammosphere formation. Addition of exogenous AREG promotes mammosphere formation in cells where AREG expression is knocked down by siRNA and mammosphere formation by AREG(-/-) mammary epithelial cells. AREG knockdown inhibits mammosphere formation by duct-limited mammary progenitor cells but not lobule-limited mammary progenitor cells. These data demonstrate AREG mediates the function of a subset of mammary progenitor cells in vitro.


Respiratory Research | 2007

IL-13-induced proliferation of airway epithelial cells: mediation by intracellular growth factor mobilization and ADAM17

Brian W. Booth; Tracy Sandifer; Erika L Martin; Linda D. Martin

BackgroundThe pleiotrophic cytokine interleukin (IL)-13 features prominently in allergic and inflammatory diseases. In allergic asthma, IL-13 is well established as an inducer of airway inflammation and tissue remodeling. We demonstrated previously that IL-13 induces release of transforming growth factor-α (TGFα) from human bronchial epithelial cells, with proliferation of these cells mediated by the autocrine/paracrine action of this growth factor. TGFα exists as an integral membrane protein and requires proteolytic processing to its mature form, with a disintegrin and metalloproteinase (ADAM)17 responsible for this processing in a variety of tissues.MethodsIn this study, normal human bronchial epithelial (NHBE) cells grown in air/liquid interface (ALI) culture were used to examine the mechanisms whereby IL-13 induces release of TGFα and cellular proliferation. Inhibitors and antisense RNA were used to examine the role of ADAM17 in these processes, while IL-13-induced changes in the intracellular expression of TGFα and ADAM17 were visualized by confocal microscopy.ResultsIL-13 was found to induce proliferation of NHBE cells, and release of TGFα, in an ADAM17-dependent manner; however, this IL-13-induced proliferation did not appear to result solely from ADAM17 activation. Rather, IL-13 induced a change in the location of TGFα expression from intracellular to apical regions of the NHBE cells. The apical region was also found to be a site of significant ADAM17 expression, even prior to IL-13 stimulation.ConclusionResults from this study indicate that ADAM17 mediates IL-13-induced proliferation and TGFα shedding in NHBE cells. Furthermore, they provide the first example wherein a cytokine (IL-13) induces a change in the intracellular expression pattern of a growth factor, apparently inducing redistribution of intracellular stores of TGFα to the apical region of NHBE cells where expression of ADAM17 is prominent. Thus, IL-13-induced, ADAM17-mediated release of TGFα, and subsequent epithelial cell proliferation, could contribute to the epithelial hypertrophy, as well as other features, associated with airway remodeling in allergic asthma.


Breast Cancer Research | 2008

Selective segregation of DNA strands persists in long label retaining mammary cells during pregnancy

Brian W. Booth; Corinne A. Boulanger; Gilbert H. Smith

IntroductionDuring pregnancy the mammary epithelial compartment undergoes extreme proliferation and differentiation, facilitated by stem/progenitor cells. Mouse mammary epithelium in nonpregnant mice contains long label-retaining epithelial cells (LREC) that divide asymmetrically and retain their template DNA strands. The role of LREC during alveogenesis has not been determined.MethodsWe performed immunohistochemistry and autoradiography on murine mammary glands that had been labeled with 5-bromodeoxyuridine (5BrdU) during allometric ductal growth to investigate the co-expression of DNA label retention and estrogen receptor-α or progesterone receptor during pregnancy. A second DNA label ([3H]-thymidine) was administered during pregnancy to identify label-retaining cells (LRC), which subsequently enter the cell cycle. Use of this methodology allowed us to investigate the co-localization of 5BrdU with smooth muscle actin, CD31, cytokeratin, and desmin in periductal or peri-acinar LRC in mammary tissue from pregnant mice subsequent to a long chase period in order to identify LRC.ResultsEstrogen receptor-α positive and progesterone receptor positive cells represented approximately 30% to 40% of the LREC, which is under 1.0% of the epithelial subpopulation. Pregnancy altered the percentage of LREC expressing estrogen receptor-α. LRC situated in periductal or peri-acinar positions throughout the gland do not express epithelial, endothelial, or myoepithelial markers, and these undefined LRCs persist throughout pregnancy. Additionally, new cycling LREC ([3H]-thymidine retaining) appear during alveologenesis, and LRC found in other tissue types (for example, endothelium and nerve) within the mammary fat pad become double labeled during pregnancy, which indicates that they may also divide asymmetrically.ConclusionsOur findings support the premise that there is a subpopulation of LREC in the mouse mammary gland that persists during alveologenesis. These cells react to hormonal cues during pregnancy and enter the cell cycle while continuing to retain, selectively, their original template DNA. In addition, nonepithelial LRC are found in periductal or peri-acinar positions. These LRC also enter the cell cycle during pregnancy. During alveologenesis, newly created label-retaining ([3H]-thymidine) epithelial cells appear within the expanding alveoli and continue to cycle and retain their original template DNA ([3H]-thymidine) strands, as determined by a second pulse of 5BrdU.

Collaboration


Dive into the Brian W. Booth's collaboration.

Top Co-Authors

Avatar

Gilbert H. Smith

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Corinne A. Boulanger

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David L. Mack

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Linda D. Martin

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James C. Bonner

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Kenneth B. Adler

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge