Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian W. Davis is active.

Publication


Featured researches published by Brian W. Davis.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication.

Michael J. Montague; Gang Li; Barbara Gandolfi; Razib Khan; Bronwen Aken; Steven M. J. Searle; Patrick Minx; LaDeana W. Hillier; Daniel C. Koboldt; Brian W. Davis; Carlos A. Driscoll; Christina S. Barr; Kevin Blackistone; Javier Quilez; Belen Lorente-Galdos; Tomas Marques-Bonet; Can Alkan; Gregg W.C. Thomas; Matthew W. Hahn; Marilyn Menotti-Raymond; Stephen J. O'Brien; Richard Wilson; Leslie A. Lyons; William J. Murphy; Wesley C. Warren

Significance We present highlights of the first complete domestic cat reference genome, to our knowledge. We provide evolutionary assessments of the feline protein-coding genome, population genetic discoveries surrounding domestication, and a resource of domestic cat genetic variants. These analyses span broadly, from carnivore adaptations for hunting behavior to comparative odorant and chemical detection abilities between cats and dogs. We describe how segregating genetic variation in pigmentation phenotypes has reached fixation within a single breed, and also highlight the genomic differences between domestic cats and wildcats. Specifically, the signatures of selection in the domestic cat genome are linked to genes associated with gene knockout models affecting memory, fear-conditioning behavior, and stimulus-reward learning, and potentially point to the processes by which cats became domesticated. Little is known about the genetic changes that distinguish domestic cat populations from their wild progenitors. Here we describe a high-quality domestic cat reference genome assembly and comparative inferences made with other cat breeds, wildcats, and other mammals. Based upon these comparisons, we identified positively selected genes enriched for genes involved in lipid metabolism that underpin adaptations to a hypercarnivorous diet. We also found positive selection signals within genes underlying sensory processes, especially those affecting vision and hearing in the carnivore lineage. We observed an evolutionary tradeoff between functional olfactory and vomeronasal receptor gene repertoires in the cat and dog genomes, with an expansion of the feline chemosensory system for detecting pheromones at the expense of odorant detection. Genomic regions harboring signatures of natural selection that distinguish domestic cats from their wild congeners are enriched in neural crest-related genes associated with behavior and reward in mouse models, as predicted by the domestication syndrome hypothesis. Our description of a previously unidentified allele for the gloving pigmentation pattern found in the Birman breed supports the hypothesis that cat breeds experienced strong selection on specific mutations drawn from random bred populations. Collectively, these findings provide insight into how the process of domestication altered the ancestral wildcat genome and build a resource for future disease mapping and phylogenomic studies across all members of the Felidae.


Genome Research | 2016

Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae)

Gang Li; Brian W. Davis; Eduardo Eizirik; William J. Murphy

Inter-species hybridization has been recently recognized as potentially common in wild animals, but the extent to which it shapes modern genomes is still poorly understood. Distinguishing historical hybridization events from other processes leading to phylogenetic discordance among different markers requires a well-resolved species tree that considers all modes of inheritance and overcomes systematic problems due to rapid lineage diversification by sampling large genomic character sets. Here, we assessed genome-wide phylogenetic variation across a diverse mammalian family, Felidae (cats). We combined genotypes from a genome-wide SNP array with additional autosomal, X- and Y-linked variants to sample ∼150 kb of nuclear sequence, in addition to complete mitochondrial genomes generated using light-coverage Illumina sequencing. We present the first robust felid time tree that accounts for unique maternal, paternal, and biparental evolutionary histories. Signatures of phylogenetic discordance were abundant in the genomes of modern cats, in many cases indicating hybridization as the most likely cause. Comparison of big cat whole-genome sequences revealed a substantial reduction of X-linked divergence times across several large recombination cold spots, which were highly enriched for signatures of selection-driven post-divergence hybridization between the ancestors of the snow leopard and lion lineages. These results highlight the mosaic origin of modern felid genomes and the influence of sex chromosomes and sex-biased dispersal in post-speciation gene flow. A complete resolution of the tree of life will require comprehensive genomic sampling of biparental and sex-limited genetic variation to identify and control for phylogenetic conflict caused by ancient admixture and sex-biased differences in genomic transmission.


Genome Research | 2013

Comparative analysis of mammalian Y chromosomes illuminates ancestral structure and lineage-specific evolution

Gang Li; Brian W. Davis; Terje Raudsepp; Alison J. Pearks Wilkerson; Victor C. Mason; Malcolm A. Ferguson-Smith; Patricia C. M. O'Brien; Paul D. Waters; William J. Murphy

Although more than thirty mammalian genomes have been sequenced to draft quality, very few of these include the Y chromosome. This has limited our understanding of the evolutionary dynamics of gene persistence and loss, our ability to identify conserved regulatory elements, as well our knowledge of the extent to which different types of selection act to maintain genes within this unique genomic environment. Here, we present the first MSY (male-specific region of the Y chromosome) sequences from two carnivores, the domestic dog and cat. By combining these with other available MSY data, our multiordinal comparison allows for the first accounting of levels of selection constraining the evolution of eutherian Y chromosomes. Despite gene gain and loss across the phylogeny, we show the eutherian ancestor retained a core set of 17 MSY genes, most being constrained by negative selection for nearly 100 million years. The X-degenerate and ampliconic gene classes are partitioned into distinct chromosomal domains in most mammals, but were radically restructured on the human lineage. We identified multiple conserved noncoding elements that potentially regulate eutherian MSY genes. The acquisition of novel ampliconic gene families was accompanied by signatures of positive selection and has differentially impacted the degeneration and expansion of MSY gene repertoires in different species.


Molecular Phylogenetics and Evolution | 2010

Supermatrix and species tree methods resolve phylogenetic relationships within the big cats, Panthera (Carnivora: Felidae).

Brian W. Davis; Gang Li; William J. Murphy

The pantherine lineage of cats diverged from the remainder of modern Felidae less than 11 million years ago and consists of the five big cats of the genus Panthera, the lion, tiger, jaguar, leopard, and snow leopard, as well as the closely related clouded leopard. A significant problem exists with respect to the precise phylogeny of these highly threatened great cats. Despite multiple publications on the subject, no two molecular studies have reconstructed Panthera with the same topology. These evolutionary relationships remain unresolved partially due to the recent and rapid radiation of pantherines in the Pliocene, individual speciation events occurring within less than 1 million years, and probable introgression between lineages following their divergence. We provide an alternative, highly supported interpretation of the evolutionary history of the pantherine lineage using novel and published DNA sequence data from the autosomes, both sex chromosomes and the mitochondrial genome. New sequences were generated for 39 single-copy regions of the felid Y chromosome, as well as four mitochondrial and four autosomal gene segments, totaling 28.7 kb. Phylogenetic analysis of these new data, combined with all published data in GenBank, highlighted the prevalence of phylogenetic disparities stemming either from the amplification of a mitochondrial to nuclear translocation event (numt), or errors in species identification. Our 47.6 kb combined dataset was analyzed as a supermatrix and with respect to individual partitions using maximum likelihood and Bayesian phylogenetic inference, in conjunction with Bayesian Estimation of Species Trees (BEST) which accounts for heterogeneous gene histories. Our results yield a robust consensus topology supporting the monophyly of lion and leopard, with jaguar sister to these species, as well as a sister species relationship of tiger and snow leopard. These results highlight new avenues for the study of speciation genomics and understanding the historical events surrounding the origin of the members of this lineage.


Ilar Journal | 2014

Domestic Dogs and Cancer Research: A Breed-Based Genomics Approach

Brian W. Davis; Elaine A. Ostrander

Domestic dogs are unique from other animal models of cancer in that they generally experience spontaneous disease. In addition, most types of cancer observed in humans are found in dogs, suggesting that canines may be an informative system for the study of cancer genetics. Domestic dogs are divided into over 175 breeds, with members of each breed sharing significant phenotypes. The breed barrier enhances the utility of the model, especially for genetic studies where small numbers of genes are hypothesized to account for the breed cancer susceptibility. These facts, combined with recent advances in high-throughput sequencing technologies allows for an unrivaled ability to use pet dog populations to find often subtle mutations that promote cancer susceptibility and progression in dogs as a whole. The meticulous record keeping associated with dog breeding makes the model still more powerful, as it facilitates both association analysis and family-based linkage studies. Key to the success of these studies is their cooperative nature, with owners, scientists, veterinarians and breed clubs working together to avoid the cost and unpopularity of developing captive populations. In this article we explore these principals and advocate for colony-free, genetic studies that will enhance our ability to diagnose and treat cancer in dogs and humans alike.


Genomics | 2009

A high-resolution cat radiation hybrid and integrated FISH mapping resource for phylogenomic studies across Felidae.

Brian W. Davis; Terje Raudsepp; Alison J. Pearks Wilkerson; Richa Agarwala; Alejandro A. Schäffer; Marlys Houck; Bhanu P. Chowdhary; William J. Murphy

We describe the construction of a high-resolution radiation hybrid (RH) map of the domestic cat genome, which includes 2662 markers, translating to an estimated average intermarker distance of 939 kilobases (kb). Targeted marker selection utilized the recent feline 1.9x genome assembly, concentrating on regions of low marker density on feline autosomes and the X chromosome, in addition to regions flanking interspecies chromosomal breakpoints. Average gap (breakpoint) size between cat-human ordered conserved segments is less than 900 kb. The map was used for a fine-scale comparison of conserved syntenic blocks with the human and canine genomes. Corroborative fluorescence in situ hybridization (FISH) data were generated using 129 domestic cat BAC clones as probes, providing independent confirmation of the long-range correctness of the map. Cross-species hybridization of BAC probes on divergent felids from the genera Profelis (serval) and Panthera (snow leopard) provides further evidence for karyotypic conservation within felids, and demonstrates the utility of such probes for future studies of chromosome evolution within the cat family and in related carnivores. The integrated map constitutes a comprehensive framework for identifying genes controlling feline phenotypes of interest, and to aid in assembly of a higher coverage feline genome sequence.


Cell Reports | 2017

Genomic Analyses Reveal the Influence of Geographic Origin, Migration, and Hybridization on Modern Dog Breed Development

Heidi G. Parker; Dayna L. Dreger; Maud Rimbault; Brian W. Davis; Alexandra B. Mullen; Gretchen Carpintero-Ramirez; Elaine A. Ostrander

There are nearly 400 modern domestic dog breeds with a unique histories and genetic profiles. To track the genetic signatures of breed development, we have assembled the most diverse dataset of dog breeds, reflecting their extensive phenotypic variation and heritage. Combining genetic distance, migration, and genome-wide haplotype sharing analyses, we uncover geographic patterns of development and independent origins of common traits. Our analyses reveal the hybrid history of breeds and elucidate the effects of immigration, revealing for the first time a suggestion of New World dog within some modern breeds. Finally, we used cladistics and haplotype sharing to show that some common traits have arisen more than once in the history of the dog. These analyses characterize the complexities of breed development, resolving longstanding questions regarding individual breed origination, the effect of migration on geographically distinct breeds, and, by inference, transfer of trait and disease alleles among dog breeds.


PLOS Genetics | 2016

Demographically-Based Evaluation of Genomic Regions under Selection in Domestic Dogs.

Adam H. Freedman; Rena M. Schweizer; Diego Ortega-Del Vecchyo; Eunjung Han; Brian W. Davis; Ilan Gronau; Pedro Miguel Silva; Marco Galaverni; Zhenxin Fan; Peter Marx; Belen Lorente-Galdos; Oscar Ramirez; Farhad Hormozdiari; Can Alkan; Carles Vilà; Kevin Squire; Eli Geffen; Josip Kusak; Adam R. Boyko; Heidi G. Parker; Clarence Lee; Vasisht Tadigotla; Adam Siepel; Carlos Bustamante; Timothy T. Harkins; Stanley F. Nelson; Tomas Marques-Bonet; Elaine A. Ostrander; Robert K. Wayne; John Novembre

Controlling for background demographic effects is important for accurately identifying loci that have recently undergone positive selection. To date, the effects of demography have not yet been explicitly considered when identifying loci under selection during dog domestication. To investigate positive selection on the dog lineage early in the domestication, we examined patterns of polymorphism in six canid genomes that were previously used to infer a demographic model of dog domestication. Using an inferred demographic model, we computed false discovery rates (FDR) and identified 349 outlier regions consistent with positive selection at a low FDR. The signals in the top 100 regions were frequently centered on candidate genes related to brain function and behavior, including LHFPL3, CADM2, GRIK3, SH3GL2, MBP, PDE7B, NTAN1, and GLRA1. These regions contained significant enrichments in behavioral ontology categories. The 3rd top hit, CCRN4L, plays a major role in lipid metabolism, that is supported by additional metabolism related candidates revealed in our scan, including SCP2D1 and PDXC1. Comparing our method to an empirical outlier approach that does not directly account for demography, we found only modest overlaps between the two methods, with 60% of empirical outliers having no overlap with our demography-based outlier detection approach. Demography-aware approaches have lower-rates of false discovery. Our top candidates for selection, in addition to expanding the set of neurobehavioral candidate genes, include genes related to lipid metabolism, suggesting a dietary target of selection that was important during the period when proto-dogs hunted and fed alongside hunter-gatherers.


Molecular Cancer Research | 2015

Homologous Mutation to Human BRAF V600E Is Common in Naturally Occurring Canine Bladder Cancer—Evidence for a Relevant Model System and Urine-Based Diagnostic Test

Brennan Decker; Heidi G. Parker; Deepika Dhawan; Erika M. Kwon; Eric Karlins; Brian W. Davis; Jos e A. Ramos-Vara; Patty L. Bonney; Elizabeth A. McNiel; Deborah W. Knapp; Elaine A. Ostrander

Targeted cancer therapies offer great clinical promise, but treatment resistance is common, and basic research aimed at overcoming this challenge is limited by reduced genomic and biologic complexity in artificially induced rodent tumors compared with their human counterparts. Animal models that more faithfully recapitulate genotype-specific human pathology could improve the predictive value of these investigations. Here, a newly identified animal model for oncogenic BRAF-driven cancers is described. With 20,000 new cases in the United States each year, canine invasive transitional cell carcinoma of the bladder (InvTCC) is a common, naturally occurring malignancy that shares significant histologic, biologic, and clinical phenotypes with human muscle invasive bladder cancer. In order to identify somatic drivers of canine InvTCC, the complete transcriptome for multiple tumors was determined by RNAseq. All tumors harbored a somatic mutation that is homologous to the human BRAF(V600E) mutation, and an identical mutation was present in 87% of 62 additional canine InvTCC tumors. The mutation was also detectable in the urine sediments of all dogs tested with mutation-positive tumors. Functional experiments suggest that, like human tumors, canine activating BRAF mutations potently stimulate the MAPK pathway. Cell lines with the mutation have elevated levels of phosphorylated MEK, compared with a line with wild-type BRAF. This effect can be diminished through application of the BRAF(V600E) inhibitor vemurafenib. These findings set the stage for canine InvTCC as a powerful system to evaluate BRAF-targeted therapies, as well as therapies designed to overcome resistance, which could enhance treatment of both human and canine cancers Implications: This study demonstrates the activating BRAF mutation (V600E), which is found in multiple human cancers, is a driver of canine InvTCC, and highlights a urine-based test for quick diagnosis. Mol Cancer Res; 13(6); 993–1002. ©2015 AACR.


Genome Research | 2015

Comparison against 186 canid whole-genome sequences reveals survival strategies of an ancient clonally transmissible canine tumor.

Brennan Decker; Brian W. Davis; Maud Rimbault; Adrienne H. Long; Eric Karlins; Vidhya Jagannathan; Rebecca Reiman; Heidi G. Parker; Cord Drögemüller; Jason J. Corneveaux; Erica S. Chapman; Jeffery M. Trent; Tosso Leeb; Matthew J. Huentelman; Robert K. Wayne; Danielle M. Karyadi; Elaine A. Ostrander

Canine transmissible venereal tumor (CTVT) is a parasitic cancer clone that has propagated for thousands of years via sexual transfer of malignant cells. Little is understood about the mechanisms that converted an ancient tumor into the worlds oldest known continuously propagating somatic cell lineage. We created the largest existing catalog of canine genome-wide variation and compared it against two CTVT genome sequences, thereby separating alleles derived from the founders genome from somatic mutations that must drive clonal transmissibility. We show that CTVT has undergone continuous adaptation to its transmissible allograft niche, with overlapping mutations at every step of immunosurveillance, particularly self-antigen presentation and apoptosis. We also identified chronologically early somatic mutations in oncogenesis- and immune-related genes that may represent key initiators of clonal transmissibility. Thus, we provide the first insights into the specific genomic aberrations that underlie CTVTs dogged perseverance in canids around the world.

Collaboration


Dive into the Brian W. Davis's collaboration.

Top Co-Authors

Avatar

Elaine A. Ostrander

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Heidi G. Parker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dayna L. Dreger

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Brennan Decker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Eric Karlins

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Maud Rimbault

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge