Heidi G. Parker
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heidi G. Parker.
PLOS Genetics | 2005
Dana S. Mosher; Pascale Quignon; Carlos Bustamante; Nathan B. Sutter; Cathryn S. Mellersh; Heidi G. Parker; Elaine A. Ostrander
Double muscling is a trait previously described in several mammalian species including cattle and sheep and is caused by mutations in the myostatin (MSTN) gene (previously referred to as GDF8). Here we describe a new mutation in MSTN found in the whippet dog breed that results in a double-muscled phenotype known as the “bully” whippet. Individuals with this phenotype carry two copies of a two-base-pair deletion in the third exon of MSTN leading to a premature stop codon at amino acid 313. Individuals carrying only one copy of the mutation are, on average, more muscular than wild-type individuals (p = 7.43 × 10−6; Kruskal-Wallis Test) and are significantly faster than individuals carrying the wild-type genotype in competitive racing events (Kendalls nonparametric measure, τ = 0.3619; p ≈ 0.00028). These results highlight the utility of performance-enhancing polymorphisms, marking the first time a mutation in MSTN has been quantitatively linked to increased athletic performance.
Nature | 2010
Bridgett M. vonHoldt; John P. Pollinger; Kirk E. Lohmueller; Eunjung Han; Heidi G. Parker; Pascale Quignon; Jeremiah D. Degenhardt; Adam R. Boyko; Dent Earl; Adam Auton; Andrew R. Reynolds; Kasia Bryc; Abra Brisbin; James C. Knowles; Dana S. Mosher; Tyrone C. Spady; Abdel G. Elkahloun; Eli Geffen; Malgorzata Pilot; Włodzimierz Jędrzejewski; Claudia Greco; Ettore Randi; Danika L. Bannasch; Alan N. Wilton; Jeremy Shearman; Marco Musiani; Michelle Cargill; Paul Glyn Jones; Zuwei Qian; Wei Huang
Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication. To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the grey wolf. Here we show that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data. Furthermore, we find a surprising correspondence between genetic and phenotypic/functional breed groupings but there are exceptions that suggest phenotypic diversification depended in part on the repeated crossing of individuals with novel phenotypes. Our results show that Middle Eastern wolves were a critical source of genome diversity, although interbreeding with local wolf populations clearly occurred elsewhere in the early history of specific lineages. More recently, the evolution of modern dog breeds seems to have been an iterative process that drew on a limited genetic toolkit to create remarkable phenotypic diversity.
PLOS Biology | 2010
Adam R. Boyko; Pascale Quignon; Lin Li; Jeffrey J. Schoenebeck; Jeremiah D. Degenhardt; Kirk E. Lohmueller; Keyan Zhao; Abra Brisbin; Heidi G. Parker; Bridgett M. vonHoldt; Michele Cargill; Adam Auton; Andrew R. Reynolds; Abdel G. Elkahloun; Marta Castelhano; Dana S. Mosher; Nathan B. Sutter; Gary S. Johnson; John Novembre; Melissa J. Hubisz; Adam Siepel; Robert K. Wayne; Carlos Bustamante; Elaine A. Ostrander
The largest genetic study to date of morphology in domestic dogs identifies genes controlling nearly 100 morphological traits and identifies important trends in phenotypic variation within this species.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Richard Guyon; Travis D. Lorentzen; Christophe Hitte; Lisa Kim; Edouard Cadieu; Heidi G. Parker; Pascale Quignon; Jennifer K. Lowe; Corinne Renier; Boris Gelfenbeyn; Françoise Vignaux; Hawkins B. DeFrance; Stéphanie Gloux; Gregory G. Mahairas; Catherine André; Francis Galibert; Elaine A. Ostrander
The purebred dog population consists of >300 partially inbred genetic isolates or breeds. Restriction of gene flow between breeds, together with strong selection for traits, has led to the establishment of a unique resource for dissecting the genetic basis of simple and complex mammalian traits. Toward this end, we present a comprehensive radiation hybrid map of the canine genome composed of 3,270 markers including 1,596 microsatellite-based markers, 900 cloned gene sequences and ESTs, 668 canine-specific bacterial artificial chromosome (BAC) ends, and 106 sequence-tagged sites. The map was constructed by using the RHDF5000-2 whole-genome radiation hybrid panel and computed by using multimap and tsp/concorde. The 3,270 markers map to 3,021 unique positions and define an average intermarker distance corresponding to 1 Mb. We also define a minimal screening set of 325 highly informative well spaced markers, to be used in the initiation of genome-wide scans. The well defined synteny between the dog and human genomes, established in part as a function of this work by the identification of 85 conserved fragments, will allow follow-up of initial findings of linkage by selection of candidate genes from the human genome sequence. This work continues to define the canine system as the method of choice in the pursuit of the genes causing mammalian variation and disease.
PLOS Genetics | 2014
Adam H. Freedman; Ilan Gronau; Rena M. Schweizer; Diego Ortega-Del Vecchyo; Eunjung Han; Pedro Miguel Silva; Marco Galaverni; Zhenxin Fan; Peter Marx; Belen Lorente-Galdos; Holly C. Beale; Oscar Ramirez; Farhad Hormozdiari; Can Alkan; Carles Vilà; Kevin Squire; Eli Geffen; Josip Kusak; Adam R. Boyko; Heidi G. Parker; Clarence Lee; Vasisht Tadigotla; Adam Siepel; Carlos Bustamante; Timothy T. Harkins; Stanley F. Nelson; Elaine A. Ostrander; Tomas Marques-Bonet; Robert K. Wayne; John Novembre
To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo) and a golden jackal as an outgroup. Analysis of these sequences supports a demographic model in which dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow. In dogs, the domestication bottleneck involved at least a 16-fold reduction in population size, a much more severe bottleneck than estimated previously. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was substantially larger than represented by modern wolf populations. We narrow the plausible range for the date of initial dog domestication to an interval spanning 11–16 thousand years ago, predating the rise of agriculture. In light of this finding, we expand upon previous work regarding the increase in copy number of the amylase gene (AMY2B) in dogs, which is believed to have aided digestion of starch in agricultural refuse. We find standing variation for amylase copy number variation in wolves and little or no copy number increase in the Dingo and Husky lineages. In conjunction with the estimated timing of dog origins, these results provide additional support to archaeological finds, suggesting the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that, surprisingly, none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade. This result, in combination with dog-wolf admixture during the process of domestication, suggests that a re-evaluation of past hypotheses regarding dog origins is necessary.
Science | 2009
Edouard Cadieu; Mark W. Neff; Pascale Quignon; Kari Walsh; Kevin Chase; Heidi G. Parker; Bridgett M. vonHoldt; Alison Rhue; Adam B. Boyko; Alexandra M. Byers; Aaron K. Wong; Dana S. Mosher; Abdel G. Elkahloun; Tyrone C. Spady; Catherine André; Gordon K. Lark; Michelle Cargill; Carlos Bustamante; Robert K. Wayne; Elaine A. Ostrander
Dog Coats Shed Genetic Secrets The coats of domestic dogs show great variation—long, short, straight, wavy, curly, wiry, or smooth. To investigate how this variation arises, Cadieu et al. (p. 150, published online 27 August) performed genome-wide association studies on 80 different dog breeds. The coat phenotype could be dissected into three simple traits of length, curl, and growth pattern or texture with each trait controlled by one major gene, FGF5 (fibroblast growth factor-5), KRT71 (keratin-71), and RSPO2 (R-spondin-2), respectively. In combination, variants in these three genes alone account for the vast majority of the coat phenotypes in purebred dogs in the United States. Thus, a small number of simply inherited traits can be remixed to create extraordinary phenotypic variation. Huge variations in the coats of purebred dogs can be explained by the combinatorial effects of only three genes. Coat color and type are essential characteristics of domestic dog breeds. Although the genetic basis of coat color has been well characterized, relatively little is known about the genes influencing coat growth pattern, length, and curl. We performed genome-wide association studies of more than 1000 dogs from 80 domestic breeds to identify genes associated with canine fur phenotypes. Taking advantage of both inter- and intrabreed variability, we identified distinct mutations in three genes, RSPO2, FGF5, and KRT71 (encoding R-spondin–2, fibroblast growth factor–5, and keratin-71, respectively), that together account for most coat phenotypes in purebred dogs in the United States. Thus, an array of varied and seemingly complex phenotypes can be reduced to the combinatorial effects of only a few genes.
Science | 2009
Heidi G. Parker; Bridgett M. vonHoldt; Pascale Quignon; Elliott H. Margulies; Stephanie Shao; Dana S. Mosher; Tyrone C. Spady; Abdel G. Elkahloun; Michele Cargill; Paul Glyn Jones; Cheryl L. Maslen; Gregory M. Acland; Nathan B. Sutter; Keiichi Kuroki; Carlos Bustamante; Robert K. Wayne; Elaine A. Ostrander
Going Retro In a year celebrating Darwin, the question of how new functional genes arise during evolution is of particular interest. Through a multibreed genetic analysis of the domestic dog, Parker et al. (p. 995, published online 16 July; see the Perspective by Kaessmann) find that the short-legged phenotype that characterizes at least 19 common dog breeds, including the corgi, dachshund, and basset hound, is specifically associated with the expression in developing bone of a gene encoding fibroblast growth factor 4 (fgf4), a member of a gene family previously implicated in dwarfism in humans. Interestingly, the culprit fgf4 gene in dogs has the hallmarks of a “retrogene,” a gene that arises when a parental gene is duplicated through an RNA-based copying mechanism. The short legs that characterize certain dog breeds are associated with a gene that arose recently by RNA-based gene duplication. Retrotransposition of processed mRNAs is a common source of novel sequence acquired during the evolution of genomes. Although the vast majority of retroposed gene copies, or retrogenes, rapidly accumulate debilitating mutations that disrupt the reading frame, a small percentage become new genes that encode functional proteins. By using a multibreed association analysis in the domestic dog, we demonstrate that expression of a recently acquired retrogene encoding fibroblast growth factor 4 (fgf4) is strongly associated with chondrodysplasia, a short-legged phenotype that defines at least 19 dog breeds including dachshund, corgi, and basset hound. These results illustrate the important role of a single evolutionary event in constraining and directing phenotypic diversity in the domestic dog.
Genome Research | 2011
Bridgett M. vonHoldt; John P. Pollinger; Dent Earl; James C. Knowles; Adam R. Boyko; Heidi G. Parker; Eli Geffen; Malgorzata Pilot; Włodzimierz Jędrzejewski; Bogumiła Jędrzejewska; Vadim E. Sidorovich; Claudia Greco; Ettore Randi; Marco Musiani; Roland Kays; Carlos Bustamante; Elaine A. Ostrander; John Novembre; Robert K. Wayne
High-throughput genotyping technologies developed for model species can potentially increase the resolution of demographic history and ancestry in wild relatives. We use a SNP genotyping microarray developed for the domestic dog to assay variation in over 48K loci in wolf-like species worldwide. Despite the high mobility of these large carnivores, we find distinct hierarchical population units within gray wolves and coyotes that correspond with geographic and ecologic differences among populations. Further, we test controversial theories about the ancestry of the Great Lakes wolf and red wolf using an analysis of haplotype blocks across all 38 canid autosomes. We find that these enigmatic canids are highly admixed varieties derived from gray wolves and coyotes, respectively. This divergent genomic history suggests that they do not have a shared recent ancestry as proposed by previous researchers. Interspecific hybridization, as well as the process of evolutionary divergence, may be responsible for the observed phenotypic distinction of both forms. Such admixture complicates decisions regarding endangered species restoration and protection.
Molecular Ecology | 2005
Jennifer M. Seddon; Heidi G. Parker; Elaine A. Ostrander; Hans Ellegren
Single nucleotide polymorphisms (SNPs) have the potential to become the genetic marker of choice in studies of the ecology and conservation of natural populations because of their capacity to access variability across the genome. In this study, we provide one of the first demonstrations of SNP discovery in a wild population in order to address typical issues of importance in ecology and conservation in the recolonized Scandinavian and neighbouring Finnish wolf Canis lupus populations. Using end sequence from BAC (bacterial artificial chromosome) clones specific for dogs, we designed assays for 24 SNP loci, 20 sites of which had previously been shown to be polymorphic in domestic dogs and four sites were newly identified as polymorphic in wolves. Of the 24 assayed loci, 22 SNPs were found to be variable within the Scandinavian population and, importantly, these were able to distinguish individual wolves from one another (unbiased probability of identity of 4.33 × 10−8), providing equivalent results to that derived from 12 variable microsatellites genotyped in the same population. An assignment test shows differentiation between the Scandinavian and neighbouring Finnish wolf populations, although not all known immigrants are accurately identified. An exploration of the misclassification rates in the identification of relationships shows that neither 22 SNP nor 20 microsatellite loci are able to discriminate across single order relationships. Despite the remaining obstacle of SNP discovery in nonmodel organisms, the use of SNPs in ecological and conservation studies is encouraged by the advent of large scale screening methods. Furthermore, the ability to amplify extremely small fragments makes SNPs of particular use for population monitoring, where faecal and other noninvasive samples are routinely used.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Adam R. Boyko; Ryan H. Boyko; Corin M. Boyko; Heidi G. Parker; Marta Castelhano; Liz Corey; Jeremiah D. Degenhardt; Adam Auton; Marius Hedimbi; Robert Kityo; Elaine A. Ostrander; Jeffrey J. Schoenebeck; Rory J. Todhunter; Paul D. Jones; Carlos Bustamante
High genetic diversity of East Asian village dogs has recently been used to argue for an East Asian origin of the domestic dog. However, global village dog genetic diversity and the extent to which semiferal village dogs represent distinct, indigenous populations instead of admixtures of various dog breeds has not been quantified. Understanding these issues is critical to properly reconstructing the timing, number, and locations of dog domestication. To address these questions, we sampled 318 village dogs from 7 regions in Egypt, Uganda, and Namibia, measuring genetic diversity >680 bp of the mitochondrial D-loop, 300 SNPs, and 89 microsatellite markers. We also analyzed breed dogs, including putatively African breeds (Afghan hounds, Basenjis, Pharaoh hounds, Rhodesian ridgebacks, and Salukis), Puerto Rican street dogs, and mixed breed dogs from the United States. Village dogs from most African regions appear genetically distinct from non-native breed and mixed-breed dogs, although some individuals cluster genetically with Puerto Rican dogs or United States breed mixes instead of with neighboring village dogs. Thus, African village dogs are a mosaic of indigenous dogs descended from early migrants to Africa, and non-native, breed-admixed individuals. Among putatively African breeds, Pharaoh hounds, and Rhodesian ridgebacks clustered with non-native rather than indigenous African dogs, suggesting they have predominantly non-African origins. Surprisingly, we find similar mtDNA haplotype diversity in African and East Asian village dogs, potentially calling into question the hypothesis of an East Asian origin for dog domestication.