Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian Y. Chow is active.

Publication


Featured researches published by Brian Y. Chow.


Frontiers in Systems Neuroscience | 2011

A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex.

Xue Han; Brian Y. Chow; Huihui Zhou; Nathan Cao Klapoetke; Amy S. Chuong; Reza Rajimehr; Aimei Yang; Michael V. Baratta; Jonathan Winkle; Robert Desimone; Edward S. Boyden

Technologies for silencing the electrical activity of genetically targeted neurons in the brain are important for assessing the contribution of specific cell types and pathways toward behaviors and pathologies. Recently we found that archaerhodopsin-3 from Halorubrum sodomense (Arch), a light-driven outward proton pump, when genetically expressed in neurons, enables them to be powerfully, transiently, and repeatedly silenced in response to pulses of light. Because of the impressive characteristics of Arch, we explored the optogenetic utility of opsins with high sequence homology to Arch, from archaea of the Halorubrum genus. We found that the archaerhodopsin from Halorubrum strain TP009, which we named ArchT, could mediate photocurrents of similar maximum amplitude to those of Arch (∼900 pA in vitro), but with a >3-fold improvement in light sensitivity over Arch, most notably in the optogenetic range of 1–10 mW/mm2, equating to >2× increase in brain tissue volume addressed by a typical single optical fiber. Upon expression in mouse or rhesus macaque cortical neurons, ArchT expressed well on neuronal membranes, including excellent trafficking for long distances down neuronal axons. The high light sensitivity prompted us to explore ArchT use in the cortex of the rhesus macaque. Optical perturbation of ArchT-expressing neurons in the brain of an awake rhesus macaque resulted in a rapid and complete (∼100%) silencing of most recorded cells, with suppressed cells achieving a median firing rate of 0 spikes/s upon illumination. A small population of neurons showed increased firing rates at long latencies following the onset of light stimulation, suggesting the existence of a mechanism of network-level neural activity balancing. The powerful net suppression of activity suggests that ArchT silencing technology might be of great use not only in the causal analysis of neural circuits, but may have therapeutic applications.


Nature Materials | 2011

Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis

Jaebum Joo; Brian Y. Chow; Manu Prakash; Edward S. Boyden; Joseph M. Jacobson

Rational control over the morphology and the functional properties of inorganic nanostructures has been a long-standing goal in the development of bottom-up device fabrication processes. We report that the geometry of hydrothermally grown zinc oxide nanowires can be tuned from platelets to needles, covering more than three orders of magnitude in aspect ratio (~0.1-100). We introduce a classical thermodynamics-based model to explain the underlying growth inhibition mechanism by means of the competitive and face-selective electrostatic adsorption of non-zinc complex ions at alkaline conditions. The performance of these nanowires rivals that of vapour-phase-grown nanostructures, and their low-temperature synthesis (<60 °C) is favourable to the integration and in situ fabrication of complex and polymer-supported devices. We illustrate this capability by fabricating an all-inorganic light-emitting diode in a polymeric microfluidic manifold. Our findings indicate that electrostatic interactions in aqueous crystal growth may be systematically manipulated to synthesize nanostructures and devices with enhanced structural control.


Nature Methods | 2012

Automated whole-cell patch-clamp electrophysiology of neurons in vivo

Suhasa B. Kodandaramaiah; Giovanni Talei Franzesi; Brian Y. Chow; Edward S. Boyden; Craig R. Forest

Whole-cell patch-clamp electrophysiology of neurons is a gold-standard technique for high-fidelity analysis of the biophysical mechanisms of neural computation and pathology, but it requires great skill to perform. We have developed a robot that automatically performs patch clamping in vivo, algorithmically detecting cells by analyzing the temporal sequence of electrode impedance changes. We demonstrate good yield, throughput and quality of automated intracellular recording in mouse cortex and hippocampus.


The Journal of Neuroscience | 2013

The major brain cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors.

Steven M. Paul; James Doherty; Albert J. Robichaud; Gabriel M. Belfort; Brian Y. Chow; Rebecca S. Hammond; Devon C. Crawford; Andrew J. Linsenbardt; Hong-Jin Shu; Yukitoshi Izumi; Steven Mennerick; Charles F. Zorumski

N-methyl-d-aspartate receptors (NMDARs) are glutamate-gated ion channels that are critical to the regulation of excitatory synaptic function in the CNS. NMDARs govern experience-dependent synaptic plasticity and have been implicated in the pathophysiology of various neuropsychiatric disorders including the cognitive deficits of schizophrenia and certain forms of autism. Certain neurosteroids modulate NMDARs experimentally but their low potency, poor selectivity, and very low brain concentrations make them poor candidates as endogenous ligands or therapeutic agents. Here we show that the major brain-derived cholesterol metabolite 24(S)-hydroxycholesterol (24(S)-HC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlap that of other allosteric modulators. At submicromolar concentrations 24(S)-HC potentiates NMDAR-mediated EPSCs in rat hippocampal neurons but fails to affect AMPAR or GABAA receptors (GABAARs)-mediated responses. Cholesterol itself and other naturally occurring oxysterols present in brain do not modulate NMDARs at concentrations ≤10 μm. In hippocampal slices, 24(S)-HC enhances the ability of subthreshold stimuli to induce long-term potentiation (LTP). 24(S)-HC also reverses hippocampal LTP deficits induced by the NMDAR channel blocker ketamine. Finally, we show that synthetic drug-like derivatives of 24(S)-HC, which potently enhance NMDAR-mediated EPSCs and LTP, restore behavioral and cognitive deficits in rodents treated with NMDAR channel blockers. Thus, 24(S)-HC may function as an endogenous modulator of NMDARs acting at a novel oxysterol modulatory site that also represents a target for therapeutic drug development.


Science Translational Medicine | 2013

Optogenetics and translational medicine.

Brian Y. Chow; Edward S. Boyden

Optogenetics has proven useful for understanding basic neurobiology and may next serve as a therapeutic modality in the clinic. Optogenetic tools enable light-mediated control of cellular excitability and signaling in vivo. By manipulating biological processes, scientists can determine the roles played by these processes in intact biological systems, such as the brain. Such cellular-level control has greatly affected basic science. Here, we discuss how optogenetic tools might be translated into clinical impact through identification of new molecular and circuit-level targets and provide temporally precise interventions for defined biochemical or cellular events.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Functional and topological diversity of LOV domain photoreceptors

Spencer T. Glantz; Eric J. Carpenter; Michael Melkonian; Kevin H. Gardner; Edward S. Boyden; Gane Ka-Shu Wong; Brian Y. Chow

Significance Photoreceptor proteins dynamically control many critical physiological processes in response to light across the whole phylogenetic order, including the regulation of circadian rhythms and photosynthesis. We created a comprehensive catalog of the protein architectures and biochemical functions of a ubiquitous class of natural photoreceptors, the light–oxygen–voltage sensitive (LOV) class of flavoproteins, including >4,000 new candidate LOVs, which nearly triples the sequence diversity known to date. Establishing the functional and structural diversity of LOVs will (i) shed light on how organisms adapt to environmental changes, (ii) elucidate the structure–function principles by which common photosensory inputs are transmitted into a multitude of cell signaling events, and (iii) beget novel “optogenetic” tools for light-driven physiological perturbation of cells expressing natural or engineered photoreceptors. Light–oxygen–voltage sensitive (LOV) flavoproteins are ubiquitous photoreceptors that mediate responses to environmental cues. Photosensory inputs are transduced into signaling outputs via structural rearrangements in sensor domains that consequently modulate the activity of an effector domain or multidomain clusters. Establishing the diversity in effector function and sensor–effector topology will inform what signaling mechanisms govern light-responsive behaviors across multiple kingdoms of life and how these signals are transduced. Here, we report the bioinformatics identification of over 6,700 candidate LOV domains (including over 4,000 previously unidentified sequences from plants and protists), and insights from their annotations for ontological function and structural arrangements. Motif analysis identified the sensors from ∼42 million ORFs, with strong statistical separation from other flavoproteins and non-LOV members of the structurally related Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim family. Conserved-domain analysis determined putative light-regulated function and multidomain topologies. We found that for certain effectors, sensor–effector linker length is discretized based on both phylogeny and the preservation of α-helical heptad repeats within an extended coiled-coil linker structure. This finding suggests that preserving sensor–effector orientation is a key determinant of linker length, in addition to ancestry, in LOV signaling structure–function. We found a surprisingly high prevalence of effectors with functions previously thought to be rare among LOV proteins, such as regulators of G protein signaling, and discovered several previously unidentified effectors, such as lipases. This work highlights the value of applying genomic and transcriptomic technologies to diverse organisms to capture the structural and functional variation in photosensory proteins that are vastly important in adaptation, photobiology, and optogenetics.


Cell systems | 2016

Optogenetic Control of Calcium Oscillation Waveform Defines NFAT as an Integrator of Calcium Load

Pimkhuan Hannanta-anan; Brian Y. Chow

It is known that the calcium-dependent transcription factor NFAT initiates transcription in response to pulsatile loads of calcium signal. However, the relative contributions of calcium oscillation frequency, amplitude, and duty cycle to transcriptional activity remain unclear. Here, we engineer HeLa cells to permit optogenetic control of intracellular calcium concentration using programmable LED arrays. This approach allows us to generate calcium oscillations of constant peak amplitude, in which frequency is varied while holding duty cycle constant, or vice versa. Using this setup and mathematical modeling, we show that NFAT transcriptional activity depends more on duty cycle, defined as the proportion of the integrated calcium concentration over the oscillation period, than on frequency alone. This demonstrates that NFAT acts primarily as a signal integrator of cumulative load rather than a frequency-selective decoder. This approach resolves a fundamental question in calcium encoding and demonstrates the value of optogenetics for isolating individual dynamical components of larger signaling behaviors.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Photoelectrochemical synthesis of DNA microarrays.

Brian Y. Chow; Christopher J. Emig; Joseph M. Jacobson

Optical addressing of semiconductor electrodes represents a powerful technology that enables the independent and parallel control of a very large number of electrical phenomena at the solid-electrolyte interface. To date, it has been used in a wide range of applications including electrophoretic manipulation, biomolecule sensing, and stimulating networks of neurons. Here, we have adapted this approach for the parallel addressing of redox reactions, and report the construction of a DNA microarray synthesis platform based on semiconductor photoelectrochemistry (PEC). An amorphous silicon photoconductor is activated by an optical projection system to create virtual electrodes capable of electrochemically generating protons; these PEC-generated protons then cleave the acid-labile dimethoxytrityl protecting groups of DNA phosphoramidite synthesis reagents with the requisite spatial selectivity to generate DNA microarrays. Furthermore, a thin-film porous glass dramatically increases the amount of DNA synthesized per chip by over an order of magnitude versus uncoated glass. This platform demonstrates that PEC can be used toward combinatorial bio-polymer and small molecule synthesis.


Archive | 2011

Light-Activated Ion Pumps and Channels for Temporally Precise Optical Control of Activity in Genetically Targeted Neurons

Brian Y. Chow; Xue Han; Jacob Bernstein; Patrick E. Monahan; Edward S. Boyden

The ability to turn on and off specific cell types and neural pathways in the brain, in a temporally precise fashion, has begun to enable the ability to test the sufficiency and necessity of particular neural activity patterns, and particular neural circuits, in the generation of normal and abnormal neural computations and behaviors by the brain. Over the last 5 years, a number of naturally occurring light-activated ion pumps and light-gated ion channels have been shown, upon genetic expression in specific neuron classes, to enable the voltage (and internal ionic composition) of those neurons to be controlled by light in a temporally precise fashion, without the need for chemical co-factors. In this chapter, we review three major classes of such genetically encoded “optogenetic” microbial opsins – light-gated ion channels such as channelrhodopsins, light-driven chloride pumps such as halorhodopsins, and light-driven proton pumps such as archaerhodopsins – that are in widespread use for mediating optical activation and silencing of neurons in species from C. elegans to nonhuman primate. We discuss the properties of these molecules – including their membrane expression, conductances, photocycle properties, ion selectivity, and action spectra – as well as genetic strategies for delivering these genes to neurons in different species, and hardware for performing light delivery in a diversity of settings. In the future, these molecules will not only continue to enable cutting-edge science, but may also support a new generation of optical prosthetics for treating brain disorders.


ACS Synthetic Biology | 2016

Toolbox for Exploring Modular Gene Regulation in Synthetic Biology Training

Michael S. Magaraci; Jessica G. Bermudez; Deeksha Yogish; Daniel H. Pak; Viktor Mollov; Joshua Tycko; David Issadore; Sevile G. Mannickarottu; Brian Y. Chow

We report a toolbox for exploring the modular tuning of genetic circuits, which has been specifically optimized for widespread deployment in STEM environments through a combination of bacterial strain engineering and distributable hardware development. The transfer functions of 16 genetic switches, programmed to express a GFP reporter under the regulation of the (acyl-homoserine lactone) AHL-sensitive luxR transcriptional activator, can be parametrically tuned by adjusting high/low degrees of transcriptional, translational, and post-translational processing. Strains were optimized to facilitate daily large-scale preparation and reliable performance at room temperature in order to eliminate the need for temperature controlled apparatuses, which are both cost-limiting and space-constraining. The custom-designed, automated, and web-enabled fluorescence documentation system allows time-lapse imaging of AHL-induced GFP expression on bacterial plates with real-time remote data access, thereby requiring trainees to only be present for experimental setup. When coupled with mathematical models in agreement with empirical data, this toolbox expands the scalability and scope of reliable synthetic biology experiments for STEM training.

Collaboration


Dive into the Brian Y. Chow's collaboration.

Top Co-Authors

Avatar

Edward S. Boyden

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Joseph M. Jacobson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nathan Cao Klapoetke

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Amy S. Chuong

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Mosley

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Joshua A. Mancini

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher J. Emig

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Goutham Kodali

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge