Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher C. Moser is active.

Publication


Featured researches published by Christopher C. Moser.


Nature | 1999

Natural engineering principles of electron tunnelling in biological oxidation–reduction

Christopher C. Page; Christopher C. Moser; Xiaoxi Chen; P. Leslie Dutton

We have surveyed proteins with known atomic structure whose function involves electron transfer; in these, electrons can travel up to 14 Å between redox centres through the protein medium. Transfer over longer distances always involves a chain of cofactors. This redox centre proximity alone is sufficient to allow tunnelling of electrons at rates far faster than the substrate redox reactions it supports. Consequently, there has been no necessity for proteins to evolve optimized routes between redox centres. Instead, simple geometry enables rapid tunnelling to high-energy intermediate states. This greatly simplifies any analysis of redox protein mechanisms and challenges the need to postulate mechanisms of superexchange through redox centres or the maintenance of charge neutrality when investigating electron-transfer reactions. Such tunnelling also allows sequential electron transfer in catalytic sites to surmount radical transition states without involving the movement of hydride ions, as is generally assumed. The 14 Å or less spacing of redox centres provides highly robust engineering for electron transfer, and may reflect selection against designs that have proved more vulnerable to mutations during the course of evolution.


Science | 2011

Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement

Robert E. Blankenship; David M. Tiede; James Barber; Gary W. Brudvig; Graham R. Fleming; Maria L. Ghirardi; M. R. Gunner; Wolfgang Junge; David M. Kramer; Anastasios Melis; Thomas A. Moore; Christopher C. Moser; Daniel G. Nocera; Arthur J. Nozik; Donald R. Ort; William W. Parson; Roger C. Prince; Richard T. Sayre

Comparing photosynthetic and photovoltaic efficiencies is not a simple issue. Although both processes harvest the energy in sunlight, they operate in distinctly different ways and produce different types of products: biomass or chemical fuels in the case of natural photosynthesis and nonstored electrical current in the case of photovoltaics. In order to find common ground for evaluating energy-conversion efficiency, we compare natural photosynthesis with present technologies for photovoltaic-driven electrolysis of water to produce hydrogen. Photovoltaic-driven electrolysis is the more efficient process when measured on an annual basis, yet short-term yields for photosynthetic conversion under optimal conditions come within a factor of 2 or 3 of the photovoltaic benchmark. We consider opportunities in which the frontiers of synthetic biology might be used to enhance natural photosynthesis for improved solar energy conversion efficiency.


Trends in Biochemical Sciences | 2002

P450 BM3: the very model of a modern flavocytochrome

Andrew W. Munro; David Leys; Kirsty J. McLean; Ker R. Marshall; Tobias W. B. Ost; Simon Daff; Caroline S. Miles; Stephen K. Chapman; Dominikus A. Lysek; Christopher C. Moser; Christopher C. Page; P. Leslie Dutton

Flavocytochrome P450 BM3 is a bacterial P450 system in which a fatty acid hydroxylase P450 is fused to a mammalian-like diflavin NADPH-P450 reductase in a single polypeptide. The enzyme is soluble (unlike mammalian P450 redox systems) and its fusion arrangement affords it the highest catalytic activity of any P450 mono-oxygenase. This article discusses the fundamental properties of P450 BM3 and how progress with this model P450 has affected our comprehension of P450 systems in general.


Nature | 2009

Design and engineering of an O(2) transport protein.

Ronald L. Koder; J.L. Ross Anderson; Lee A. Solomon; Konda S. Reddy; Christopher C. Moser; P. Leslie Dutton

The principles of natural protein engineering are obscured by overlapping functions and complexity accumulated through natural selection and evolution. Completely artificial proteins offer a clean slate on which to define and test these protein engineering principles, while recreating and extending natural functions. Here we introduce this method with the design of an oxygen transport protein, akin to human neuroglobin. Beginning with a simple and unnatural helix-forming sequence with just three different amino acids, we assembled a four-helix bundle, positioned histidines to bis-histidine ligate haems, and exploited helical rotation and glutamate burial on haem binding to introduce distal histidine strain and facilitate O2 binding. For stable oxygen binding without haem oxidation, water is excluded by simple packing of the protein interior and loops that reduce helical-interface mobility. O2 affinities and exchange timescales match natural globins with distal histidines, with the remarkable exception that O2 binds tighter than CO.


Nature | 2004

Reversible redox energy coupling in electron transfer chains

Artur Osyczka; Christopher C. Moser; Fevzi Daldal; P. Leslie Dutton

Reversibility is a common theme in respiratory and photosynthetic systems that couple electron transfer with a transmembrane proton gradient driving ATP production. This includes the intensely studied cytochrome bc1, which catalyses electron transfer between quinone and cytochrome c. To understand how efficient reversible energy coupling works, here we have progressively inactivated individual cofactors comprising cytochrome bc1. We have resolved millisecond reversibility in all electron-tunnelling steps and coupled proton exchanges, including charge-separating hydroquinone–quinone catalysis at the Qo site, which shows that redox equilibria are relevant on a catalytic timescale. Such rapid reversibility renders popular models based on a semiquinone in Qo site catalysis prone to short-circuit failure. Two mechanisms allow reversible function and safely relegate short-circuits to long-distance electron tunnelling on a timescale of seconds: conformational gating of semiquinone for both forward and reverse electron transfer, or concerted two-electron quinone redox chemistry that avoids the semiquinone intermediate altogether.


Biochimica et Biophysica Acta | 1998

A reductant-induced oxidation mechanism for Complex I

P. Leslie Dutton; Christopher C. Moser; Vladimir D. Sled; Fevzi Daldal; Tomoko Ohnishi

A model for energy conversion in Complex I is proposed that is a conservative expansion of Mitchells Q-cycle using a simple mechanistic variation of that already established experimentally for Complex III. The model accommodates the following proposals. (1) The large number of flavin and iron-sulfur redox cofactors integral to Complex I form a simple but long electron transfer chain guiding submillisecond electron transfer from substrate NADH in the matrix to the [4Fe-4S] cluster N2 close to the matrix-membrane interface. (2) The reduced N2 cluster injects a single electron into a ubiquinone (Q) drawn from the membrane pool into a nearby Qnz site, generating an unstable transition state semiquinone (SQ). The generation of a SQ species is the primary step in the energy conversion process in Complex I, as in Complex III. In Complex III, the SQ at the Qo site near the cytosolic side acts as a strong reductant to drive electronic charge across the membrane profile via two hemes B to a Qi site near the matrix side. We propose that in Complex I, the SQ at the Qnz site near the matrix side acts as a strong oxidant to pull electronic charge across the membrane profile via a quinone (Qny site) from a Qnx site near the cytosolic side. The opposing locations of matrix side Qnz and cytosolic side Qo, together with the opposite action of Qnz as an oxidant rather than a reductant, renders the Complex I and III processes vectorially and energetically complementary. The redox properties of the Qnz and Qo site occupants can be identical. (3) The intervening Qny site of Complex I acts as a proton pumping element (akin to the proton pump of Complex IV), rather than the simple electron guiding hemes B of Complex III. Thus the transmembrane action of Complex I doubles to four (or more) the number of protons and charges translocated per NADH oxidized and Q reduced. The Qny site does not exchange with the pool and may even be covalently bound. (4) The Qnx site on the cytosol side of Complex I is complementary to the Qi site on the matrix side of Complex III and can have the same redox properties. The Qnx site draws QH2 from the membrane pool to be oxidized in two single electron steps. Besides explaining earlier observations and making testable predictions, this Complex I model re-establishes a uniformity in the mechanisms of respiratory energy conversion by using engineering principles common to Complexes III and IV: (1) all the primary energy coupling reactions in the different complexes use oxygen chemistry in the guise of dioxygen or ubiquinone, (2) these reactions are highly localized structurally, utilizing closely placed catalytic redox cofactors, (3) these reactions are also highly localized energetically, since virtually all the free energy defined by substrates is conserved in the form of transition state that initiates the transmembrane action and (4) all complexes possess apparently supernumerary oxidation-reduction cofactors which form classical electron transfer chains that operate with high directional specificity to guide electron at near zero free energies to and from the sites of localized coupling.


Journal of Bioenergetics and Biomembranes | 1995

Biological electron transfer

Christopher C. Moser; Christopher C. Page; Ramy S. Farid; P. Leslie Dutton

Many oxidoreductases are constructed from (a) local sites of strongly coupled substrate-redox cofactor partners participating in exchange of electron pairs, (b) electron pair/single electron transducing redox centers, and (c) nonadiabatic, long-distance, single-electron tunneling between weakly coupled redox centers. The latter is the subject of an expanding experimental program that seeks to manipulate, test, and apply the parameters of theory. New results from the photosynthetic reaction center protein confirm that the electronic-tunneling medium appears relatively homogeneous, with any variances evident having no impact on function, and that control of intraprotein rates and directional specificity rests on a combination of distance, free energy, and reorganization energy. Interprotein electron transfer between cytochromec and the reaction center and in lactate dehydrogenase, a typical oxidoreductase from yeast, are examined. Rates of interprotein electron transfer appear to follow intraprotein guidelines with the added essential provision of binding forces to bring the cofactors of the reacting proteins into proximity.


Biochimica et Biophysica Acta | 1992

Engineering protein structure for electron transfer function in photosynthetic reaction centers

Christopher C. Moser; P.L. Dutton

A basic relationship is defined that incorporates the three parameters that effectively modulate the rate of intraprotein electron transfer, namely distance, free energy and reorganization energy. This empirically validated relationship is used to explore the minimal requirements for protein-catalyzed conversion of excited electronic states into stable charge separated states, the essence of photosynthesis.


Trends in Biochemical Sciences | 2001

Large scale domain movement in cytochrome bc1: a new device for electron transfer in proteins

Elisabeth Darrouzet; Christopher C. Moser; P. Leslie Dutton; Fevzi Daldal

Recently, crystallographic, spectroscopic, kinetic and biochemical genetic data have merged to unveil a large domain movement for the Fe-S subunit in cytochrome bc(1). In this evolutionarily conserved enzyme, the domain motion acts to conduct intra-complex electron transfer and is essential for redox energy conversion.


Science | 2010

An Electronic Bus Bar Lies in the Core of Cytochrome bc1

Monika Świerczek; Ewelina Cieluch; Marcin Sarewicz; Arkadiusz Borek; Christopher C. Moser; P. Leslie Dutton; Artur Osyczka

Heme Communication Revealed by Asymmetry An electronic bus bar is an electrical conductor that connects several circuits. Świerczek et al. (p. 451) now find that a similar strategy is used by the protein cytochrome bc1 that plays a central role in cellular respiration and photosynthesis. Protein engineering was used to break the symmetry of a cytochrome bc1 homodimer, which revealed that the dimer is bridged by electron transfer between two hemes. This allows electrons to move freely within and between dimers to distribute between four catalytic sites. Electrons move across the entire structure of a functional dimer of an enzyme central to cellular bioenergetics. The ubiquinol–cytochrome c oxidoreductases, central to cellular respiration and photosynthesis, are homodimers. High symmetry has frustrated resolution of whether cross-dimer interactions are functionally important. This has resulted in a proliferation of contradictory models. Here, we duplicated and fused cytochrome b subunits, and then broke symmetry by introducing independent mutations into each monomer. Electrons moved freely within and between monomers, crossing an electron-transfer bridge between two hemes in the core of the dimer. This revealed an H-shaped electron-transfer system that distributes electrons between four quinone oxidation-reduction terminals at the corners of the dimer within the millisecond time scale of enzymatic turnover. Free and unregulated distribution of electrons acts like a molecular-scale bus bar, a design often exploited in electronics.

Collaboration


Dive into the Christopher C. Moser's collaboration.

Top Co-Authors

Avatar

P. Leslie Dutton

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Goutham Kodali

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua A. Mancini

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Lee A. Solomon

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Chris Bialas

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Molly M. Sheehan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Bryan A. Fry

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge