Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian Yee Hong Lam is active.

Publication


Featured researches published by Brian Yee Hong Lam.


RNA | 2011

Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization.

Laura F. Gumy; Giles S. H. Yeo; Yi-Chun Loraine Tung; Krishna H. Zivraj; Dianna E. Willis; Giovanni Coppola; Brian Yee Hong Lam; Jeffery L. Twiss; Christine E. Holt; James W. Fawcett

mRNAs are transported, localized, and translated in axons of sensory neurons. However, little is known about the full repertoire of transcripts present in embryonic and adult sensory axons and how this pool of mRNAs dynamically changes during development. Here, we used a compartmentalized chamber to isolate mRNA from pure embryonic and adult sensory axons devoid of non-neuronal or cell body contamination. Genome-wide microarray analysis reveals that a previously unappreciated number of transcripts are localized in sensory axons and that this repertoire changes during development toward adulthood. Embryonic axons are enriched in transcripts encoding cytoskeletal-related proteins with a role in axonal outgrowth. Surprisingly, adult axons are enriched in mRNAs encoding immune molecules with a role in nociception. Additionally, we show Tubulin-beta3 (Tubb3) mRNA is present only in embryonic axons, with Tubb3 locally synthesized in axons of embryonic, but not adult neurons where it is transported, thus validating our experimental approach. In summary, we provide the first complete catalog of embryonic and adult sensory axonal mRNAs. In addition we show that this pool of axonal mRNAs dynamically changes during development. These data provide an important resource for studies on the role of local protein synthesis in axon regeneration and nociception during neuronal development.


Phytomedicine | 2003

Neuroprotective effects of tanshinones in transient focal cerebral ischemia in mice

Brian Yee Hong Lam; Amy C. Y. Lo; Xiaoru Sun; H.W. Luo; Sookja K. Chung; Nikolaus J. Sucher

Tanshinones are the major lipid soluble pharmacological constituents of Danshen, the dried roots of Salvia miltiorrhiza Bunge (Labiatae), a well known traditional Chinese medicine used for the treatment of cerebrovascular diseases including stroke. Potential neuroprotective effects of tanshinones IIA (TsIIA) and IIB (TsIIB) were examined in adult mice subjected to transient focal cerebral ischemia caused by middle cerebral artery occlusion (MCAo). Our results revealed that TsIIA (16 mg/kg) readily penetrated the blood brain barrier reaching a peak concentration of 0.41 nmol/g brain wet weight 60 minutes after intraperitoneal injection and decreased slowly over several hours. Twenty-four hours after middle cerebral artery occlusion, brain infarct volume was reduced by 30% and 37% following treatment with TsIIA and TsIIB, respectively. The reduction in brain infarct volume was accompanied by a significant decrease in the observed neurological deficit. Tanshinones or other structurally related compounds may have potential for further development as neuroprotective drugs.


Free Radical Biology and Medicine | 2010

Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice.

Sergio Rodriguez-Cuenca; Helena M. Cochemé; Angela Logan; Irina Abakumova; Tracy A. Prime; Claudia Rose; Antonio Vidal-Puig; Anthony C. Smith; David C. Rubinsztein; Ian M. Fearnley; Bruce A. Jones; Simon Pope; Simon Heales; Brian Yee Hong Lam; Sudeshna Guha Neogi; Ian G. McFarlane; Andrew M. James; Robin A. J. Smith; Michael P. Murphy

The mitochondria-targeted quinone MitoQ protects mitochondria in animal studies of pathologies in vivo and is being developed as a therapy for humans. However, it is unclear whether the protective action of MitoQ is entirely due to its antioxidant properties, because long-term MitoQ administration may alter whole-body metabolism and gene expression. To address this point, we administered high levels of MitoQ orally to wild-type C57BL/6 mice for up to 28 weeks and investigated the effects on whole-body physiology, metabolism, and gene expression, finding no measurable deleterious effects. In addition, because antioxidants can act as pro-oxidants under certain conditions in vitro, we examined the effects of MitoQ administration on markers of oxidative damage. There were no changes in the expression of mitochondrial or antioxidant genes as assessed by DNA microarray analysis. There were also no increases in oxidative damage to mitochondrial protein, DNA, or cardiolipin, and the activities of mitochondrial enzymes were unchanged. Therefore, MitoQ does not act as a pro-oxidant in vivo. These findings indicate that mitochondria-targeted antioxidants can be safely administered long-term to wild-type mice.


The Journal of Clinical Endocrinology and Metabolism | 2012

Microarray, qPCR, and KCNJ5 Sequencing of Aldosterone-Producing Adenomas Reveal Differences in Genotype and Phenotype between Zona Glomerulosa- and Zona Fasciculata-Like Tumors

Elena Azizan; Brian Yee Hong Lam; Stephen Newhouse; Junhua Zhou; Rhoda Kuc; Jennifer Clarke; Lisa Happerfield; Alison Marker; Gary J. Hoffman; Morris J. Brown

CONTEXT Aldosterone-producing adenomas (APA) are heterogeneous. The recent finding of somatic KCNJ5 mutations suggests a genetic explanation. OBJECTIVES The objectives of this study were the following: 1) to compare transcriptional profiles in APA and adjacent adrenal gland (AAG); 2) to test whether gene expression profile clusters with different cell histology; and 3) to measure the frequency of KCNJ5 mutations and determine the genotype-phenotype relationship. DESIGN/SETTING The design of the study included laboratory analyses of 46 unselected APA. PATIENTS The patients in this study had primary hyperaldosteronism with unilateral APA. INTERVENTIONS The objectives of this study were the following: 1) Illumina beadchip analysis of RNA from eight paired APA-AAG; 2) a blinded review of cell histology for 46 APA; 3) laser capture microdissection of zona glomerulosa (ZG) and zona fasciculata (ZF) cells; and 4) sequencing of KCNJ5 in 46 APA. MAIN OUTCOME MEASURES The main outcome measures of this study were the following: 1) a difference in gene expression profile and a correlation with histological markers of ZF; 2) a frequency of KCNJ5 mutations and phenotypic comparisons of wild type with mutant APA. RESULTS The results of the study were the following: 1) a cluster analysis of microarray data separated APA from AAG. APA at opposite ends of the APA cluster had an approximately 800-fold difference in CYP17A1 mRNA expression, whereas histology showed 0% ZF-like cells in one vs. 100% in the other. A heat map ranking APA by CYP17A1 expression correctly predicted several genes (e.g. KCNK1, SLC24A3) to be enriched in laser capture microdissection samples of ZG; 2) known or novel mutations of KCNJ5 were found in 20 of 46 consecutive APA [43% (95% confidence interval [CI] (29, 58)%)]. The APA with KCNJ5 gene mutations were larger compared with tumors harboring the wild type, 1.63 [95% CI (1.37, 1.88)] vs. 1.14 [0.97, 1.30] cm (P = 0.0013), had predominantly ZF-like cells, and their CYP17A1 (log(2)-fold change) was higher than in wild type: -0.96 [95% CI (-0.07, -1.85)] vs. -2.54 [-1.61, -3.46], (P = 0.017). CONCLUSIONS KCNJ5 mutations are common in APA, particularly those arising from ZF. The long-recognized heterogeneity among APA may have a genetic basis.


Molecular Systems Biology | 2010

microRNA-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma

Julja Burchard; Chunsheng Zhang; Angela M. Liu; Ronnie Tung-Ping Poon; Nikki P. Lee; Kwong-Fai Wong; Pak Sham; Brian Yee Hong Lam; Mark Ferguson; George Tokiwa; Ryan Smith; Brendan Leeson; Rebecca Beard; John Lamb; Lee Lim; Mao Mao; Hongyue Dai; John M. Luk

Tumorigenesis involves multistep genetic alterations. To elucidate the microRNA (miRNA)–gene interaction network in carcinogenesis, we examined their genome‐wide expression profiles in 96 pairs of tumor/non‐tumor tissues from hepatocellular carcinoma (HCC). Comprehensive analysis of the coordinate expression of miRNAs and mRNAs reveals that miR‐122 is under‐expressed in HCC and that increased expression of miR‐122 seed‐matched genes leads to a loss of mitochondrial metabolic function. Furthermore, the miR‐122 secondary targets, which decrease in expression, are good prognostic markers for HCC. Transcriptome profiling data from additional 180 HCC and 40 liver cirrhotic patients in the same cohort were used to confirm the anti‐correlation of miR‐122 primary and secondary target gene sets. The HCC findings can be recapitulated in mouse liver by silencing miR‐122 with antagomir treatment followed by gene‐expression microarray analysis. In vitro miR‐122 data further provided a direct link between induction of miR‐122‐controlled genes and impairment of mitochondrial metabolism. In conclusion, miR‐122 regulates mitochondrial metabolism and its loss may be detrimental to sustaining critical liver function and contribute to morbidity and mortality of liver cancer patients.


BMC Research Notes | 2012

BarraCUDA - a fast short read sequence aligner using graphics processing units

Petr Klus; Simon Lam; Dag Lyberg; Ming Sin Cheung; Graham Pullan; Ian G. McFarlane; Giles S. H. Yeo; Brian Yee Hong Lam

BackgroundWith the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence.FindingsUsing the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput.ConclusionsBarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology.BarraCUDA is currently available from http://seqbarracuda.sf.net


Cell | 2016

Trim28 Haploinsufficiency Triggers Bi-stable Epigenetic Obesity

Kevin Dalgaard; Kathrin Landgraf; Steffen Heyne; Adelheid Lempradl; John Longinotto; Klaus Gossens; Marius Ruf; Michael Orthofer; Ruslan Strogantsev; Madhan Selvaraj; Tess Tsai-Hsiu Lu; Eduard Casas; Raffaele Teperino; M. Azim Surani; Ilona Zvetkova; Debra Rimmington; Y.C. Loraine Tung; Brian Yee Hong Lam; Rachel Larder; Giles S. H. Yeo; Stephen O’Rahilly; Tanya Vavouri; Emma Whitelaw; Josef M. Penninger; Thomas Jenuwein; Ching-Lung Cheung; Anne C. Ferguson-Smith; Anthony P. Coll; Antje Körner; J. Andrew Pospisilik

Summary More than one-half billion people are obese, and despite progress in genetic research, much of the heritability of obesity remains enigmatic. Here, we identify a Trim28-dependent network capable of triggering obesity in a non-Mendelian, “on/off” manner. Trim28+/D9 mutant mice exhibit a bi-modal body-weight distribution, with isogenic animals randomly emerging as either normal or obese and few intermediates. We find that the obese-“on” state is characterized by reduced expression of an imprinted gene network including Nnat, Peg3, Cdkn1c, and Plagl1 and that independent targeting of these alleles recapitulates the stochastic bi-stable disease phenotype. Adipose tissue transcriptome analyses in children indicate that humans too cluster into distinct sub-populations, stratifying according to Trim28 expression, transcriptome organization, and obesity-associated imprinted gene dysregulation. These data provide evidence of discrete polyphenism in mouse and man and thus carry important implications for complex trait genetics, evolution, and medicine. Video Abstract


Nature Communications | 2013

Solution-based circuits enable rapid and multiplexed pathogen detection

Brian Yee Hong Lam; Jagotamoy Das; Richard D. Holmes; Ludovic Live; Andrew P. Sage; Edward H. Sargent; Shana O. Kelley

Electronic readout of markers of disease provides compelling simplicity, sensitivity and specificity in the detection of small panels of biomarkers in clinical samples; however, the most important emerging tests for disease, such as infectious disease speciation and antibiotic-resistance profiling, will need to interrogate samples for many dozens of biomarkers. Electronic readout of large panels of markers has been hampered by the difficulty of addressing large arrays of electrode-based sensors on inexpensive platforms. Here we report a new concept--solution-based circuits formed on chip--that makes highly multiplexed electrochemical sensing feasible on passive chips. The solution-based circuits switch the information-carrying signal readout channels and eliminate all measurable crosstalk from adjacent, biomolecule-specific microsensors. We build chips that feature this advance and prove that they analyse unpurified samples successfully, and accurately classify pathogens at clinically relevant concentrations. We also show that signature molecules can be accurately read 2  minutes after sample introduction.


Accounts of Chemical Research | 2014

Ultrasensitive Electrochemical Biomolecular Detection Using Nanostructured Microelectrodes

Andrew T. Sage; Justin D. Besant; Brian Yee Hong Lam; Edward H. Sargent; Shana O. Kelley

Electrochemical sensors have the potential to achieve sensitive, specific, and low-cost detection of biomolecules--a capability that is ever more relevant to the diagnosis and monitored treatment of disease. The development of devices for clinical diagnostics based on electrochemical detection could provide a powerful solution for the routine use of biomarkers in patient treatment and monitoring and may overcome the many issues created by current methods, including the long sample-to-answer times, high cost, and limited prospects for lab-free use of traditional polymerase chain reaction, microarrays, and gene-sequencing technologies. In this Account, we summarize the advances in electrochemical biomolecular detection, focusing on a new and integrated platform that exploits the bottom-up fabrication of multiplexed electrochemical sensors composed of electrodeposited noble metals. We trace the evolution of these sensors from gold nanoelectrode ensembles to nanostructured microelectrodes (NMEs) and discuss the effects of surface morphology and size on assay performance. The development of a novel electrocatalytic assay based on Ru(3+) adsorption and Fe(3+) amplification at the electrode surface as a means to enable ultrasensitive analyte detection is discussed. Electrochemical measurements of changes in hybridization events at the electrode surface are performed using a simple potentiostat, which enables integration into a portable, cost-effective device. We summarize the strategies for proximal sample processing and detection in addition to those that enable high degrees of sensor multiplexing capable of measuring 100 different analytes on a single chip. By evaluating the cost and performance of various sensor substrates, we explore the development of practical lab-on-a-chip prototype devices. By functionalizing the NMEs with capture probes specific to nucleic acid, small molecule, and protein targets, we can successfully detect a wide variety of analytes at clinically relevant concentrations and speeds. Using this platform, we have achieved attomolar detection levels of nucleic acids with overall assay times as short as 2 min. We also describe the adaptation of the sensing platform to allow for the measurement of uncharged analytes--a challenge for reporter systems that rely on the charge of an analyte. Furthermore, the capabilities of this system have been applied to address the many current and important clinical challenges involving the detection of pathogenic species, including both bacterial and viral infections and cancer biomarkers. This novel electrochemical platform, which achieves large molecular-to-electrical amplification by means of its unique redox-cycling readout strategy combined with rapid and efficient analyte capture that is aided by nanostructured microelectrodes, achieves excellent specificity and sensitivity in clinical samples in which analytes are present at low concentrations in complex matrices.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2011

Developmental control of the Nlrp6 inflammasome and a substrate, IL-18, in mammalian intestine

Gusztav Belteki; Alison J. Forhead; Abigail L. Fowden; Robert D Catalano; Brian Yee Hong Lam; Ian G. McFarlane; D. Stephen Charnock-Jones; Gordon C. S. Smith

The inflammasome is a multiprotein complex whose formation is triggered when a NOD-like receptor binds a pathogen ligand, resulting in activated caspase-1, which converts certain interleukins (IL-1β, IL-18, and IL-33) to their active forms. There is currently no information on regulation of this system around the time of birth. We employed transcript profiling of fetal rat intestinal and lung RNA at embryonic days 16 (E16) and 20 (E20) with out-of-sample validation using quantitative RT-PCR. Transcript profiling and quantitative RT-PCR demonstrated that transcripts of core components of the NOD-like receptor Nlrp6 inflammasome (Nlrp6, Pycard, Caspase-1) and one of its substrates, IL-18, were increased at E20 compared with E16 in fetal intestine and not lung. Immunohistochemistry demonstrated increased Pycard in intestinal epithelium. Western blotting demonstrated that IL-18 was undetectable at E16, clearly detectable at E20 in its inactive form, and detectable postnatally in both its inactive and active form. Dramatic upregulation of IL-18 was also observed in the fetal sheep jejunum in late gestation (P = 0.006). Transcription factor binding analysis of the rat array data revealed an overrepresentation of nuclear transcription factor binding sites peroxisome proliferator-activated receptor γ (PPAR-γ) and retinoid X receptor-α and chicken ovalbumin upstream promoter transcription factor 1 in the region 1,000 bp upstream of the transcription start site. Rosiglitazone, a PPAR-γ agonist, more than doubled levels of NLRP6 mRNA in human intestinal epithelial (Caco2) cells. These observations provide the first evidence, to our knowledge, linking activity of PPAR-γ to expression of a NOD-like receptor and adds to a growing body of evidence linking pattern recognition receptors of the innate immune system and intestinal colonization.

Collaboration


Dive into the Brian Yee Hong Lam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Luk

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Nikki P. Lee

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Elena Azizan

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Junhua Zhou

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Morris J. Brown

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge