Debra Rimmington
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Debra Rimmington.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Pawan Gulati; M. K. Cheung; Robin Antrobus; Chris Church; Heather P. Harding; Yi-Chun Loraine Tung; Debra Rimmington; Marcella Ma; David Ron; Paul J. Lehner; Frances M. Ashcroft; Roger D. Cox; Anthony P. Coll; Stephen O'Rahilly; Giles S. H. Yeo
SNPs in the first intron of FTO (fat mass and obesity associated) are strongly associated with human obesity. While it is not yet formally established that this effect is mediated through the actions of the FTO protein itself, loss of function mutations in FTO or its murine homologue Fto result in severe growth retardation, and mice globally overexpressing FTO are obese. The mechanisms through which FTO influences growth and body composition are unknown. We describe a role for FTO in the coupling of amino acid levels to mammalian target of rapamycin complex 1 signaling. These findings suggest that FTO may influence body composition through playing a role in cellular nutrient sensing.
PLOS Genetics | 2013
Fiona McMurray; Chris Church; Rachel Larder; George Nicholson; Sara Wells; Lydia Teboul; Y.C. Loraine Tung; Debra Rimmington; Fatima Bosch; Veronica Jimenez; Giles S. H. Yeo; Stephen O'Rahilly; Frances M. Ashcroft; Anthony P. Coll; Roger D. Cox
The strongest BMI–associated GWAS locus in humans is the FTO gene. Rodent studies demonstrate a role for FTO in energy homeostasis and body composition. The phenotypes observed in loss of expression studies are complex with perinatal lethality, stunted growth from weaning, and significant alterations in body composition. Thus understanding how and where Fto regulates food intake, energy expenditure, and body composition is a challenge. To address this we generated a series of mice with distinct temporal and spatial loss of Fto expression. Global germline loss of Fto resulted in high perinatal lethality and a reduction in body length, fat mass, and lean mass. When ratio corrected for lean mass, mice had a significant increase in energy expenditure, but more appropriate multiple linear regression normalisation showed no difference in energy expenditure. Global deletion of Fto after the in utero and perinatal period, at 6 weeks of age, removed the high lethality of germline loss. However, there was a reduction in weight by 9 weeks, primarily as loss of lean mass. Over the subsequent 10 weeks, weight converged, driven by an increase in fat mass. There was a switch to a lower RER with no overall change in food intake or energy expenditure. To test if the phenotype can be explained by loss of Fto in the mediobasal hypothalamus, we sterotactically injected adeno-associated viral vectors encoding Cre recombinase to cause regional deletion. We observed a small reduction in food intake and weight gain with no effect on energy expenditure or body composition. Thus, although hypothalamic Fto can impact feeding, the effect of loss of Fto on body composition is brought about by its actions at sites elsewhere. Our data suggest that Fto may have a critical role in the control of lean mass, independent of its effect on food intake.
Cell | 2016
Kevin Dalgaard; Kathrin Landgraf; Steffen Heyne; Adelheid Lempradl; John Longinotto; Klaus Gossens; Marius Ruf; Michael Orthofer; Ruslan Strogantsev; Madhan Selvaraj; Tess Tsai-Hsiu Lu; Eduard Casas; Raffaele Teperino; M. Azim Surani; Ilona Zvetkova; Debra Rimmington; Y.C. Loraine Tung; Brian Yee Hong Lam; Rachel Larder; Giles S. H. Yeo; Stephen O’Rahilly; Tanya Vavouri; Emma Whitelaw; Josef M. Penninger; Thomas Jenuwein; Ching-Lung Cheung; Anne C. Ferguson-Smith; Anthony P. Coll; Antje Körner; J. Andrew Pospisilik
Summary More than one-half billion people are obese, and despite progress in genetic research, much of the heritability of obesity remains enigmatic. Here, we identify a Trim28-dependent network capable of triggering obesity in a non-Mendelian, “on/off” manner. Trim28+/D9 mutant mice exhibit a bi-modal body-weight distribution, with isogenic animals randomly emerging as either normal or obese and few intermediates. We find that the obese-“on” state is characterized by reduced expression of an imprinted gene network including Nnat, Peg3, Cdkn1c, and Plagl1 and that independent targeting of these alleles recapitulates the stochastic bi-stable disease phenotype. Adipose tissue transcriptome analyses in children indicate that humans too cluster into distinct sub-populations, stratifying according to Trim28 expression, transcriptome organization, and obesity-associated imprinted gene dysregulation. These data provide evidence of discrete polyphenism in mouse and man and thus carry important implications for complex trait genetics, evolution, and medicine. Video Abstract
Journal of Neuroendocrinology | 2010
Marcus P. Corander; Benjamin G. Challis; E. L. Thompson; Zorica Jovanovic; Y.C. Loraine Tung; Debra Rimmington; I. T. Huhtaniemi; K. G. Murphy; Ali Kemal Topaloglu; Giles S. H. Yeo; Stephen O’Rahilly; Waljit S. Dhillo; Semple Rk; Anthony P. Coll
Growing evidence suggests the tachykinin neurokinin B (NKB) may modulate gonadotrophin secretion and play a role in sex‐steroid feedback within the reproductive axis. NKB signalling has recently been identified as being necessary for normal human reproductive function, although the precise mechanisms underpinning this role remain to be established. We have used rodents to explore further the role of NKB within the reproductive axis. In particular, we have studied its interactions with kisspeptin, a neuropeptide essential for reproductive function in rodent and human with close anatomical links to NKB within the hypothalamus. Intraperitoneal administration of NKB (50 nmol) to male mice had no effect on circulating luteinsing hormone (LH) levels and, although i.p. kisspeptin (15 nmol) increased LH five‐fold, co‐administration of NKB and kisspeptin was indistinguishable from kisspeptin alone. Intracerebroventricular administration of NKB (10 nmol) to male mice also had no effect on LH levels, with 1 nmol kisspeptin i.c.v. significantly increasing LH compared to control (0.37 ± 0.18 versus 5.11 ± 0.28 ng/ml, respectively). Interestingly, i.c.v. co‐administration of NKB and kisspeptin caused a significant increase in LH concentrations compared to kisspeptin alone (8.96 ± 1.82 versus 5.11 ± 0.28 ng/ml respectively). We used hypothalamic explants from rats to assess the effect of NKB on gonadotrpohin‐releasing hormone (GnRH) secretion ex vivo. Doses of NKB up to 1000 nm failed to stimulate GnRH secretion, whereas 100 nm kisspeptin robustly increased GnRH secretion. Of note, co‐administration of NKB with kisspeptin abrogated the effect of kisspeptin, producing no GnRH release above basal state. Finally, we analysed the expression of Tac2/Tacr3 (genes encoding NKB and NK3R, respectively) within the arcuate nucleus in different nutritional states. After a 48‐h fast, the expression of both Tac2 and Tacr3 showed a significant increase, in contrast to levels of Kiss1 and Kiss1r mRNA, which remained unchanged. In male rodent models, NKB and kisspeptin have different effects upon gonadotrophin release and appear to interact in a complex manner.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Johannes Grosse; Helen Heffron; Keith Burling; Mohammed Akhter Hossain; Abdella M. Habib; Gareth J. Rogers; Paul Richards; Rachel Larder; Debra Rimmington; Alice A. Adriaenssens; Laura Parton; Justin Powell; Matteo Binda; William H. Colledge; Joanne Doran; Yukio Toyoda; John D. Wade; Samuel Aparicio; Mark B. L. Carlton; Anthony P. Coll; Frank Reimann; Stephen O’Rahilly; Fiona M. Gribble
Significance Hormonal factors from specialized enteroendocrine cells in the gut epithelium link the availability of dietary nutrients to energy utilization and storage. Many gut hormones also affect behaviors such as appetite and foraging, conveying for example the satiating effects of food consumption. Here we identify insulin-like peptide 5 (Insl5) as a product of colonic endocrine L-cells, and show that levels were elevated in calorie-restricted mice and reduced after feeding. Consistent with this profile Insl5 administration stimulated food intake in mice, indicating it should join ghrelin as only the second identified gut hormone that enhances appetite. Modulating the Insl5 axis presents a new strategy for the treatment of metabolic disease and obesity. The gut endocrine system is emerging as a central player in the control of appetite and glucose homeostasis, and as a rich source of peptides with therapeutic potential in the field of diabetes and obesity. In this study we have explored the physiology of insulin-like peptide 5 (Insl5), which we identified as a product of colonic enteroendocrine L-cells, better known for their secretion of glucagon-like peptide-1 and peptideYY. i.p. Insl5 increased food intake in wild-type mice but not mice lacking the cognate receptor Rxfp4. Plasma Insl5 levels were elevated by fasting or prolonged calorie restriction, and declined with feeding. We conclude that Insl5 is an orexigenic hormone released from colonic L-cells, which promotes appetite during conditions of energy deprivation.
Molecular metabolism | 2017
Brian Yee Hong Lam; Irene Cimino; Joseph Polex-Wolf; Sara Nicole Kohnke; Debra Rimmington; Valentine P. Iyemere; Nicholas Heeley; Chiara Cossetti; Reiner Schulte; Luis R. Saraiva; Darren W. Logan; Clémence Blouet; Stephen O'Rahilly; Anthony P. Coll; Giles S. H. Yeo
Objective Arcuate proopiomelanocortin (POMC) neurons are critical nodes in the control of body weight. Often characterized simply as direct targets for leptin, recent data suggest a more complex architecture. Methods Using single cell RNA sequencing, we have generated an atlas of gene expression in murine POMC neurons. Results Of 163 neurons, 118 expressed high levels of Pomc with little/no Agrp expression and were considered “canonical” POMC neurons (P+). The other 45/163 expressed low levels of Pomc and high levels of Agrp (A+P+). Unbiased clustering analysis of P+ neurons revealed four different classes, each with distinct cell surface receptor gene expression profiles. Further, only 12% (14/118) of P+ neurons expressed the leptin receptor (Lepr) compared with 58% (26/45) of A+P+ neurons. In contrast, the insulin receptor (Insr) was expressed at similar frequency on P+ and A+P+ neurons (64% and 55%, respectively). Conclusion These data reveal arcuate POMC neurons to be a highly heterogeneous population. Accession Numbers: GSE92707.
Endocrinology | 2011
Marcus P. Corander; Debra Rimmington; Benjamin G. Challis; Stephen O'Rahilly; Anthony P. Coll
Data from mice lacking all endogenous melanocortin peptides suggest Agouti-related-peptide acts in vivo as a melanocortin antagonist rather than an inverse agonist.
Molecular metabolism | 2015
Y.C. Loraine Tung; Pawan Gulati; Che-Hsiung Liu; Debra Rimmington; Rowena J. Dennis; Marcella Ma; Vladimir Saudek; Stephen O'Rahilly; Anthony P. Coll; Giles S. H. Yeo
Objective Loss of function FTO mutations significantly impact body composition in humans and mice, with Fto-deficient mice reported to resist the development of obesity in response to a high-fat diet (HFD). We aimed to further explore the interactions between FTO and HFD and determine if FTO can influence the adverse metabolic consequence of HFD. Methods We studied mice deficient in FTO in two well validated models of leptin resistance (HFD feeding and central palmitate injection) to determine how Fto genotype may influence the action of leptin. Using transcriptomic analysis of hypothalamic tissue to identify relevant pathways affected by the loss of Fto, we combined data from co-immunoprecipitation, yeast 2-hybrid and luciferase reporter assays to identify mechanisms through which FTO can influence the development of leptin resistant states. Results Mice deficient in Fto significantly increased their fat mass in response to HFD. Fto+/− and Fto−/− mice remained sensitive to the anorexigenic effects of leptin, both after exposure to a HFD or after acute central application of palmitate. Genes encoding components of the NFкB signalling pathway were down-regulated in the hypothalami of Fto-deficient mice following a HFD. When this pathway was reactivated in Fto-deficient mice with a single low central dose of TNFα, the mice became less sensitive to the effect of leptin. We identified a transcriptional coactivator of NFкB, TRIP4, as a binding partner of FTO and a molecule that is required for TRIP4 dependent transactivation of NFкB. Conclusions Our study demonstrates that, independent of body weight, Fto influences the metabolic outcomes of a HFD through alteration of hypothalamic NFкB signalling. This supports the notion that pharmacological modulation of FTO activity might have the potential for therapeutic benefit in improving leptin sensitivity, in a manner that is influenced by the nutritional environment.
Journal of Clinical Investigation | 2018
Joseph Polex-Wolf; Brian Yee Hong Lam; Rachel Larder; John Tadross; Debra Rimmington; Fatima Bosch; Verónica Jiménez Cenzano; Eduard Ayuso; Marcella Ma; Kara Rainbow; Anthony P. Coll; Stephen O’Rahilly; Giles S. H. Yeo
Profound hyperphagia is a major disabling feature of Prader-Willi syndrome (PWS). Characterization of the mechanisms that underlie PWS-associated hyperphagia has been slowed by the paucity of animal models with increased food intake or obesity. Mice with a microdeletion encompassing the Snord116 cluster of noncoding RNAs encoded within the Prader-Willi minimal deletion critical region have previously been reported to show growth retardation and hyperphagia. Here, consistent with previous reports, we observed growth retardation in Snord116+/–P mice with a congenital paternal Snord116 deletion. However, these mice neither displayed increased food intake nor had reduced hypothalamic expression of the proprotein convertase 1 gene PCSK1 or its upstream regulator NHLH2, which have recently been suggested to be key mediators of PWS pathogenesis. Specifically, we disrupted Snord116 expression in the mediobasal hypothalamus in Snord116fl mice via bilateral stereotaxic injections of a Cre-expressing adeno-associated virus (AAV). While the Cre-injected mice had no change in measured energy expenditure, they became hyperphagic between 9 and 10 weeks after injection, with a subset of animals developing marked obesity. In conclusion, we show that selective disruption of Snord116 expression in the mediobasal hypothalamus models the hyperphagia of PWS.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Rachel Larder; M. F. Michelle Sim; Pawan Gulati; Robin Antrobus; Y.C. Loraine Tung; Debra Rimmington; Eduard Ayuso; Joseph Polex-Wolf; Brian Yee Hong Lam; Cristina Dias; Darren W. Logan; Sam Virtue; Fatima Bosch; Giles S. H. Yeo; Vladimir Saudek; Stephen O’Rahilly; Anthony P. Coll
Significance The growing size and sophistication of genome-wide association studies have led to the identification of variants which are clearly and reliably associated with obesity. A strong association between increased BMI and a region of human chromosome 2, near to the gene TMEM18, has been repeatedly demonstrated in children and adults. The function of TMEM18 in the control of appetitive behavior and body composition has been poorly characterized. In murine models, we show germline loss results in weight gain while adult onset hypothalamic overexpression results in weight loss, supporting the hypothesis that TMEM18 acting within the central nervous system can affect energy balance. We also report a structure and putative molecular function of TMEM18, challenging the current published model. An intergenic region of human chromosome 2 (2p25.3) harbors genetic variants which are among those most strongly and reproducibly associated with obesity. The gene closest to these variants is TMEM18, although the molecular mechanisms mediating these effects remain entirely unknown. Tmem18 expression in the murine hypothalamic paraventricular nucleus (PVN) was altered by changes in nutritional state. Germline loss of Tmem18 in mice resulted in increased body weight, which was exacerbated by high fat diet and driven by increased food intake. Selective overexpression of Tmem18 in the PVN of wild-type mice reduced food intake and also increased energy expenditure. We provide evidence that TMEM18 has four, not three, transmembrane domains and that it physically interacts with key components of the nuclear pore complex. Our data support the hypothesis that TMEM18 itself, acting within the central nervous system, is a plausible mediator of the impact of adjacent genetic variation on human adiposity.