Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brianna S. Eller is active.

Publication


Featured researches published by Brianna S. Eller.


Journal of Vacuum Science and Technology | 2013

Electronic surface and dielectric interface states on GaN and AlGaN

Brianna S. Eller; Jialing Yang; R. J. Nemanich

GaN and AlGaN have shown great potential in next-generation high-power electronic devices; however, they are plagued by a high density of interface states that affect device reliability and performance, resulting in large leakage current and current collapse. In this review, the authors summarize the current understanding of the gate leakage current and current collapse mechanisms, where awareness of the surface defects is the key to controlling and improving device performance. With this in mind, they present the current research on surface states on GaN and AlGaN and interface states on GaN and AlGaN-based heterostructures. Since GaN and AlGaN are polar materials, both are characterized by a large bound polarization charge on the order of 1013 charges/cm2 that requires compensation. The key is therefore to control the compensation charge such that the electronic states do not serve as electron traps or affect device performance and reliability. Band alignment modeling and measurement can help to determi...


Journal of Applied Physics | 2012

Comparative band alignment of plasma-enhanced atomic layer deposited high-k dielectrics on gallium nitride

Jialing Yang; Brianna S. Eller; Chiyu Zhu; Chris England; R. J. Nemanich

Al2O3 films, HfO2 films, and HfO2/Al2O3 stacked structures were deposited on n-type, Ga-face, GaN wafers using plasma-enhanced atomic layer deposition (PEALD). The wafers were first treated with a wet-chemical clean to remove organics and an in-situ combined H2/N2 plasma at 650 °C to remove residual carbon contamination, resulting in a clean, oxygen-terminated surface. This cleaning process produced slightly upward band bending of 0.1 eV. Additional 650 °C annealing after plasma cleaning increased the upward band bending by 0.2 eV. After the initial clean, high-k oxide films were deposited using oxygen PEALD at 140 °C. The valence band and conduction band offsets (VBOs and CBOs) of the Al2O3/GaN and HfO2/GaN structures were deduced from in-situ x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). The valence band offsets were determined to be 1.8 and 1.4 eV, while the deduced conduction band offsets were 1.3 and 1.0 eV, respectively. These values are compared with the theoretical calculations b...


Journal of Applied Physics | 2011

Photo-induced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence

Yang Sun; Brianna S. Eller; R. J. Nemanich

This research focuses on the formation of Ag nanopatterns on periodically poled lithium niobate (PPLN). The photo-induced process employs UV-light exposure while the PPLN is immersed in a AgNO3 solution. The Ag deposition was consistent with previous results, showing preferential deposition along the domain boundary as well as an increased density of particles on the positive domain surface in comparison to the negative domain. By tuning the chemical solution concentration and the UV-light intensity, the Ag+ ion flux and the electron flux are varied and the deposition pattern could be controlled to either enhance the nanowire-like structures along the domain boundary or create a more uniform deposition pattern over the positive and negative domains. To understand the deposition process, we investigated the relationship between the Ag+ ion flux because of diffusion and the electron flux initiated by the UV exposure of the ferroelectric surface. The subsequent results suggest that this relationship is respo...


Journal of Applied Physics | 2014

Surface band bending and band alignment of plasma enhanced atomic layer deposited dielectrics on Ga- and N-face gallium nitride

Jialing Yang; Brianna S. Eller; R. J. Nemanich

The effects of surface pretreatment, dielectric growth, and post deposition annealing on interface electronic structure and polarization charge compensation of Ga- and N-face bulk GaN were investigated. The cleaning process consisted of an ex-situ wet chemical NH4OH treatment and an in-situ elevated temperature NH3 plasma process to remove carbon contamination, reduce oxygen coverage, and potentially passivate N-vacancy related defects. After the cleaning process, carbon contamination decreased below the x-ray photoemission spectroscopy detection limit, and the oxygen coverage stabilized at ∼1 monolayer on both Ga- and N-face GaN. In addition, Ga- and N-face GaN had an upward band bending of 0.8 ± 0.1 eV and 0.6 ± 0.1 eV, respectively, which suggested the net charge of the surface states and polarization bound charge was similar on Ga- and N-face GaN. Furthermore, three dielectrics (HfO2, Al2O3, and SiO2) were prepared by plasma-enhanced atomic layer deposition on Ga- or N-face GaN and annealed in N2 ambient to investigate the effect of the polarization charge on the interface electronic structure and band offsets. The respective valence band offsets of HfO2, Al2O3, and SiO2 with respect to Ga- and N-face GaN were 1.4 ± 0.1, 2.0 ± 0.1, and 3.2 ± 0.1 eV, regardless of dielectric thickness. The corresponding conduction band offsets were 1.0 ± 0.1, 1.3 ± 0.1, and 2.3 ± 0.1 eV, respectively. Experimental band offset results were consistent with theoretical calculations based on the charge neutrality level model. The trend of band offsets for dielectric/GaN interfaces was related to the band gap and/or the electronic part of the dielectric constant. The effect of polarization charge on band offset was apparently screened by the dielectric-GaN interface states.


Journal of Vacuum Science and Technology | 2014

Characterization of plasma-enhanced atomic layer deposition of Al2O3 using dimethylaluminum isopropoxide

Jialing Yang; Brianna S. Eller; Manpuneet Kaur; R. J. Nemanich

In this research, Al2O3 films were grown by remote plasma-enhanced atomic layer deposition using a nonpyrophoric precursor, dimethylaluminum isopropoxide (DMAI), and oxygen plasma. After optimization, the growth rate was determined to be ∼1.5 A/cycle within a growth window of 25–220 °C; the higher growth rate than reported for thermal atomic layer deposition was ascribed to the higher reactivity of the plasma species compared with H2O and the adsorption of active oxygen at the surface, which was residual from the oxygen plasma exposure. Both effects enhance DMAI chemisorption and increase the saturation density. In addition, a longer oxygen plasma time was required at room temperature to complete the reaction and decrease the carbon contamination below the detection limit of x-ray photoemission spectroscopy. The properties of the subsequent Al2O3 films were measured for different temperatures. When deposited at 25 °C and 200 °C, the Al2O3 films demonstrated a single Al-O bonding state as measured by x-ray photoemission spectroscopy, a similar band gap of 6.8±0.2 eV as determined by energy loss spectroscopy, a similar index of refraction of 1.62±0.02 as determined by spectroscopic ellipsometry, and uniform growth with a similar surface roughness before and after growth as confirmed by atomic force microscopy. However, the room temperature deposited Al2O3 films had a lower mass density (2.7 g/cm3 compared with 3.0 g/cm3) and a higher atomic ratio of O to Al (2.1 compared with 1.6) as indicated by x-ray reflectivity and Rutherford backscattering spectroscopy, respectively.


Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena | 2012

Cu film thermal stability on plasma cleaned polycrystalline Ru

Xin Liu; Chiyu Zhu; Brianna S. Eller; Tianyin Sun; Christopher J. Jezewski; S. W. King; R. J. Nemanich

The first part of this study examined oxide stability and cleaning of Ru surfaces. The surface reactions during H2 plasma exposure of Ru polycrystalline films were studied using x-ray photoelectron spectroscopy (XPS). The ∼2 monolayer native Ru oxide was reduced after H-plasma processing. However, absorbed oxygen, presumably in the grain boundaries, remains after processing. A vacuum thermal anneal at 150 °C substantially removes both surface oxide and absorbed oxygen which is attributed to a reduction by carbon contamination. The second part of the study examined the thermal stability of Cu on a Ru layer. The thermal stability or islanding of the Cu film on the Ru substrate was characterized by in situ XPS. After plasma cleaning of the Ru adhesion layer, the deposited Cu exhibited full coverage. In contrast, for Cu deposition on the Ru native oxide substrate, Cu islanding was detected and was described in terms of grain boundary grooving and surface and interface energies. The oxygen in the grain boundar...


Journal of Applied Physics | 2017

Surface band bending and interface alignment of plasma-enhanced atomic layer deposited SiO2 on AlxGa1-xN

Brianna S. Eller; R. J. Nemanich

AlxGa1-xN is characterized by a significant spontaneous and piezoelectric polarization, which increases with the aluminum content. As a result, a surface bound charge is present, which favors compensation by surface states and influences the reliability of AlGaN/GaN devices. This work, therefore, focused on the effects of the polarization charge for GaN and AlGaN with three different aluminum concentrations 15%, 25%, and 35%. The band bending of AlxGa1-xN surfaces was measured after a N2/H2 plasma pretreatment, which reduced the carbon and oxygen contamination below the detection limit of x-ray photoelectron spectroscopy. Surface band bending was then related to surface states, where the band bending of oxygen-free surfaces—as obtained with a high-temperature, immersed hydrogen/nitrogen plasma clean—scales with the aluminum content. In addition, the band offsets at the plasma-enhanced atomic layer deposited SiO2/AlxGa1-xN interface were measured, giving 3.4 eV, 3.3 eV, 3.3 eV, and 3.0 eV for respective 0%...


Proceedings of SPIE | 2016

Use of plasma enhanced ALD to construct efficient interference filters for astronomy in the FUV

Paul A. Scowen; R. J. Nemanich; Brianna S. Eller; Hongbin Yu; Tom Mooney; Matt Beasley

Over the past few years the advent of atomic layer deposition (ALD) technology has opened new capabilities to the field of coatings deposition for use in optical elements. At the same time, there have been major advances in both optical designs and detector technologies that can provide orders of magnitude improvement in throughput in the far ultraviolet (FUV) and near ultraviolet (NUV) passbands. Recent review work has shown that a veritable revolution is about to happen in astronomical diagnostic work for targets ranging from protostellar and protoplanetary systems, to the intergalactic medium that feeds gas supplies for galactic star formation, and supernovae and hot gas from star forming regions that determine galaxy formation feedback. These diagnostics are rooted in access to a forest of emission and absorption lines in the ultraviolet (UV)[1], and all that prevents this advance is the lack of throughput in such systems, even in space-based conditions. We outline an approach to use a range of materials to implement stable optical layers suitable for protective overcoats with high UV reflectivity and unprecedented uniformity, and use that capability to leverage innovative ultraviolet/optical filter construction to enable astronomical science. These materials will be deposited in a multilayer format over a metal base to produce a stable construct. Specifically, we will employ the use of PEALD (plasma-enhanced atomic layer deposition) methods for the deposition and construction of reflective layers that can be used to construct unprecedented filter designs for use in the ultraviolet.


Journal of Electronic Materials | 2014

Polarization Effects of GaN and AlGaN: Polarization Bound Charge, Band Bending, and Electronic Surface States

Brianna S. Eller; Jialing Yang; R. J. Nemanich


Bulletin of the American Physical Society | 2015

Photo-induced Nanopattern Formation on Polarity Patterned Lithium Niobate with ZnO-Modified Surfaces

Manpuneet Kaur; Xingye Wang; Brianna S. Eller; R. J. Nemanich

Collaboration


Dive into the Brianna S. Eller's collaboration.

Top Co-Authors

Avatar

R. J. Nemanich

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Jialing Yang

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Chiyu Zhu

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Manpuneet Kaur

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Chris England

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Hongbin Yu

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Paul A. Scowen

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge