Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brigid A. McKenna is active.

Publication


Featured researches published by Brigid A. McKenna.


Environmental Science & Technology | 2013

Fate of ZnO Nanoparticles in Soils and Cowpea (Vigna unguiculata)

Peng Wang; Neal W. Menzies; Enzo Lombi; Brigid A. McKenna; Bernt Johannessen; Christopher Glover; Peter Kappen; Peter M. Kopittke

The increasing use of zinc oxide nanoparticles (ZnO-NPs) in various commercial products is prompting detailed investigation regarding the fate of these materials in the environment. There is, however, a lack of information comparing the transformation of ZnO-NPs with soluble Zn(2+) in both soils and plants. Synchrotron-based techniques were used to examine the uptake and transformation of Zn in various tissues of cowpea ( Vigna unguiculata (L.) Walp.) exposed to ZnO-NPs or ZnCl2 following growth in either solution or soil culture. In solution culture, soluble Zn (ZnCl2) was more toxic than the ZnO-NPs, although there was substantial accumulation of ZnO-NPs on the root surface. When grown in soil, however, there was no significant difference in plant growth and accumulation or speciation of Zn between soluble Zn and ZnO-NP treatments, indicating that the added ZnO-NPs underwent rapid dissolution following their entry into the soil. This was confirmed by an incubation experiment with two soils, in which ZnO-NPs could not be detected after incubation for 1 h. The speciation of Zn was similar in shoot tissues for both soluble Zn and ZnO-NPs treatments and no upward translocation of ZnO-NPs from roots to shoots was observed in either solution or soil culture. Under the current experimental conditions, the similarity in uptake and toxicity of Zn from ZnO-NPs and soluble Zn in soils indicates that the ZnO-NPs used in this study did not constitute nanospecific risks.


Plant Physiology | 2011

In Situ Distribution and Speciation of Toxic Copper, Nickel, and Zinc in Hydrated Roots of Cowpea

Peter M. Kopittke; Neal W. Menzies; Martin D. de Jonge; Brigid A. McKenna; Erica Donner; Richard I. Webb; David Paterson; Daryl L. Howard; C.G. Ryan; Christopher Glover; Kirk G. Scheckel; Enzo Lombi

The phytotoxicity of trace metals is of global concern due to contamination of the landscape by human activities. Using synchrotron-based x-ray fluorescence microscopy and x-ray absorption spectroscopy, the distribution and speciation of copper (Cu), nickel (Ni), and zinc (Zn) was examined in situ using hydrated roots of cowpea (Vigna unguiculata) exposed to 1.5 μm Cu, 5 μm Ni, or 40 μm Zn for 1 to 24 h. After 24 h of exposure, most Cu was bound to polygalacturonic acid of the rhizodermis and outer cortex, suggesting that binding of Cu to walls of cells in the rhizodermis possibly contributes to the toxic effects of Cu. When exposed to Zn, cortical concentrations remained comparatively low with much of the Zn accumulating in the meristematic region and moving into the stele; approximately 60% to 85% of the total Zn stored as Zn phytate within 3 h of exposure. While Ni concentrations were high in both the cortex and meristem, concentrations in the stele were comparatively low. To our knowledge, this is the first report of the in situ distribution and speciation of Cu, Ni, and Zn in hydrated (and fresh) plant tissues, providing valuable information on the potential mechanisms by which they are toxic.


New Phytologist | 2014

Laterally resolved speciation of arsenic in roots of wheat and rice using fluorescence-XANES imaging

Peter M. Kopittke; Martin D. de Jonge; Peng Wang; Brigid A. McKenna; Enzo Lombi; David Paterson; Daryl L. Howard; Simon A. James; Kathryn Spiers; C.G. Ryan; Alexander A. T. Johnson; Neal W. Menzies

• Accumulation of arsenic (As) within plant tissues represents a human health risk, but there remains much to learn regarding the speciation of As within plants. • We developed synchrotron-based fluorescence-X-ray absorption near-edge spectroscopy (fluorescence-XANES) imaging in hydrated and fresh plant tissues to provide laterally resolved data on the in situ speciation of As in roots of wheat (Triticum aestivum) and rice (Oryza sativa) exposed to 2 μM As(V) or As(III). • When exposed to As(V), the As was rapidly reduced to As(III) within the root, with As(V) calculated to be present only in the rhizodermis. However, no uncomplexed As(III) was detected in any root tissues, because of the efficient formation of the As(III)-thiol complex - this As species was calculated to account for all of the As in the cortex and stele. The observation that uncomplexed As(III) was below the detection limit in all root tissues explains why the transport of As to the shoots is low, given that uncomplexed As(III) is the major As species transported within the xylem and phloem. • Using fluorescence-XANES imaging, we have provided in situ data showing the accumulation and transformation of As within hydrated and fresh root tissues.


Plant and Soil | 2009

Metal-induced cell rupture in elongating roots is associated with metal ion binding strengths

Peter M. Kopittke; Brigid A. McKenna; F. P. C. Blamey; Johannes B. Wehr; Neal W. Menzies

Low concentrations of Al, Cu and La rapidly decrease root elongation and cause transverse ruptures to the rhizodermis and outer cortex, but it is not known if other trace metals have similar effects. Six trace metals, Ga, Gd, Hg, In, Ru, and Sc, decreased cowpea root growth and caused ruptures similar to those caused by Al, Cu and La. Calculated speciation of the metals showed that only Gd was almost exclusively present as the trivalent ion (Gd3+), but the other test solutions were dominated by Ga(OH)2+, HgCl20, either In3+, In(OH)2+, In(OH)2+, In(OH)30, or InCl2+, and Sc3+ or ScOH2+ (no thermodynamic constants were available for Ru). The results from this and other studies suggest that the ability of these trace metals (plus Al, Cu, and La) to cause ruptures is related to the strength to which the trace metals bind to the cell wall. Therefore, it is proposed that the toxic effects of trace metals results from (1) the strength of binding (either ionically or covalently), and (2) other toxic effects of the metals not dependent on cell wall interactions.


Plant Physiology | 2012

Examination of the Distribution of Arsenic in Hydrated and Fresh Cowpea Roots Using Two- and Three-Dimensional Techniques

Peter M. Kopittke; Martin D. de Jonge; Neal W. Menzies; Peng Wang; Erica Donner; Brigid A. McKenna; David Paterson; Daryl L. Howard; Enzo Lombi

Arsenic (As) is considered to be the environmental contaminant of greatest concern due to its potential accumulation in the food chain and in humans. Using novel synchrotron-based x-ray fluorescence techniques (including sequential computed tomography), short-term solution culture studies were used to examine the spatial distribution of As in hydrated and fresh roots of cowpea (Vigna unguiculata ‘Red Caloona’) seedlings exposed to 4 or 20 µm arsenate [As(V)] or 4 or 20 µm arsenite. For plants exposed to As(V), the highest concentrations were observed internally at the root apex (meristem), with As also accumulating in the root border cells and at the endodermis. When exposed to arsenite, the endodermis was again a site of accumulation, although no As was observed in border cells. For As(V), subsequent transfer of seedlings to an As-free solution resulted in a decrease in tissue As concentrations, but growth did not improve. These data suggest that, under our experimental conditions, the accumulation of As causes permanent damage to the meristem. In addition, we suggest that root border cells possibly contribute to the plant’s ability to tolerate excess As(V) by accumulating high levels of As and limiting its movement into the root.


Science of The Total Environment | 2013

Quantitative determination of metal and metalloid spatial distribution in hydrated and fresh roots of cowpea using synchrotron-based X-ray fluorescence microscopy

Peng Wang; Neal W. Menzies; Enzo Lombi; Brigid A. McKenna; Martin D. de Jonge; Erica Donner; F. Pax C. Blamey; C.G. Ryan; David Paterson; Daryl L. Howard; Simon A. James; Peter M. Kopittke

Many metals and metalloids, jointly termed metal(loid)s, are toxic to plants even at low levels. This has limited the study of their uptake, distribution, and modes of action in plant roots grown at physiologically relevant concentrations. Synchrotron-based X-ray fluorescence microscopy was used to examine metal(loid)s in hydrated cowpea (Vigna unguiculata L.) roots exposed to Zn(II), Ni(II), Mn(II), Cu(II), Hg(II), Se(IV), Se(VI), As(III), or As(V). Development of a mathematical model enabled in situ quantitative determination of their distribution in root tissues. The binding strength of metals influenced the extent of their movement through the root cylinder, which influenced the toxic effects exerted-metals (e.g. Cu, Hg) that bind more strongly to hard ligands had high concentrations in the rhizodermis and caused this tissue to rupture, while other metals (e.g. Ni, Zn) moved further into the root cylinder and did not cause ruptures. When longitudinal distributions were examined, the highest Se concentration in roots exposed to Se(VI) was in the more proximal root tissues, suggesting that Se(VI) is readily loaded into the stele. This contrasted with other metal(loid)s (e.g. Mn, As), which accumulated in the apex. These differences in metal(loid) spatial distribution provide valuable quantitative data on metal(loid) physiology, including uptake, transport, and toxicity in plant roots.


Environmental Toxicology and Chemistry | 2011

Toxicity of metals to roots of cowpea in relation to their binding strength

Peter M. Kopittke; F. Pax C. Blamey; Brigid A. McKenna; Peng Wang; Neal W. Menzies

Metal phytotoxicity is important in both environmental and agricultural systems. A solution culture study examined the toxicity of 26 metals to roots of cowpea (Vigna unguiculata (L.) Walp.); new data were collected for 15 metals and published data for 11 metals. Metal toxicity, calculated as causing a 50% reduction in root elongation rate, was determined based on either the measured concentration in the bulk solution (EC50(b)) or the calculated activity at the outer surface of the plasma membrane (EA50(0)°). The EC50(b) values ranged from 0.007 µM for Tl to 98,000 µM for K, with the order of rhizotoxicity to cowpea, from most to least toxic, being Tl = Ag > Cu > Hg = Ni = Ga = Ru = In > Sc = Cd = Gd = La = Co = Cs = Pb > Zn = Al = H > Mn > Ba = Sr > Li > Mg > Ca = Na > K. The EA50(0)° values suggest that the binding of metals to hard ligands is an important, general, nonspecific mechanism of toxicity, a hypothesis supported by the similar toxicity symptoms to roots of cowpea by many metals. However, additional mechanisms, such as strong binding to soft ligands, substantially increase rhizotoxicity of some metals, especially Tl, Ag, and Cs. Besides direct toxic effects, osmotic effects or reduced activity of Ca(2+) at the outer surface of the root plasma membrane (and resultant Ca deficiency) may decrease short-term root growth.


Environmental Toxicology and Chemistry | 2014

The rhizotoxicity of metal cations is related to their strength of binding to hard ligands

Peter M. Kopittke; Neal W. Menzies; Peng Wang; Brigid A. McKenna; J. Bernhard Wehr; Enzo Lombi; Thomas B. Kinraide; F. Pax C. Blamey

Mechanisms whereby metal cations are toxic to plant roots remain largely unknown. Aluminum, for example, has been recognized as rhizotoxic for approximately 100 yr, but there is no consensus on its mode of action. The authors contend that the primary mechanism of rhizotoxicity of many metal cations is nonspecific and that the magnitude of toxic effects is positively related to the strength with which they bind to hard ligands, especially carboxylate ligands of the cell-wall pectic matrix. Specifically, the authors propose that metal cations have a common toxic mechanism through inhibiting the controlled relaxation of the cell wall as required for elongation. Metal cations such as Al(3+) and Hg(2+), which bind strongly to hard ligands, are toxic at relatively low concentrations because they bind strongly to the walls of cells in the rhizodermis and outer cortex of the root elongation zone with little movement into the inner tissues. In contrast, metal cations such as Ca(2+), Na(+), Mn(2+), and Zn(2+) , which bind weakly to hard ligands, bind only weakly to the cell wall and move farther into the root cylinder. Only at high concentrations is their weak binding sufficient to inhibit the relaxation of the cell wall. Finally, different mechanisms would explain why certain metal cations (for example, Tl(+), Ag(+), Cs(+), and Cu(2+)) are sometimes more toxic than expected through binding to hard ligands. The data presented in the present study demonstrate the importance of strength of binding to hard ligands in influencing a range of important physiological processes within roots through nonspecific mechanisms.


Carbohydrate Research | 2010

Effects of Ca, Cu, Al and La on pectin gel strength: implications for plant cell walls

Brigid A. McKenna; Timothy Nicholson; J. Bernhard Wehr; Neal W. Menzies

Rheology of Ca-pectate gels is widely studied, but the behaviour of pectate gels formed by Cu, Al and La is largely unknown. It is well known that gel strength increases with increasing Ca concentration, and it is hypothesised that this would also be the case for other cations. Pectins are a critical component of plant cell walls, imparting various physicochemical properties. Furthermore, the mechanism of metal toxicity in plants is hypothesised to be, in the short term, related to metal interactions with cell wall pectin. This study investigated the influence of Ca, Cu, Al and La ion concentrations at pH 4 on the storage modulus as a function of frequency for metal-pectin gels prepared from pectin (1%) with a degree of esterification of 30%. Gels were formed in situ over 6d in metal chloride solution adjusted daily to pH 4. Cation concentration was varied to develop a relationship between gel strength and cation concentration. At similar levels of cation saturation, gel strength increased in the order of La


Physiologia Plantarum | 2013

Distribution and speciation of Mn in hydrated roots of cowpea at levels inhibiting root growth

Peter M. Kopittke; Enzo Lombi; Brigid A. McKenna; Peng Wang; Erica Donner; Richard I. Webb; F. Pax C. Blamey; Martin D. de Jonge; David Paterson; Daryl L. Howard; Neal W. Menzies

The phytotoxicity of Mn is important globally due to its increased solubility in acid or waterlogged soils. Short-term (≤24 h) solution culture studies with 150 µM Mn were conducted to investigate the in situ distribution and speciation of Mn in apical tissues of hydrated roots of cowpea [Vigna unguiculata (L.) Walp. cv. Red Caloona] using synchrotron-based techniques. Accumulation of Mn was rapid; exposure to 150 µM Mn for only 5 min resulting in substantial Mn accumulation in the root cap and associated mucigel. The highest tissue concentrations of Mn were in the root cap, with linear combination fitting of the data suggesting that ≥80% of this Mn(II) was associated with citrate. Interestingly, although the primary site of Mn toxicity is typically the shoots, concentrations of Mn in the stele of the root were not noticeably higher than in the surrounding cortical tissues in the short-term (≤24 h). The data provided here from the in situ analyses of hydrated roots exposed to excess Mn are, to our knowledge, the first of this type to be reported for Mn and provide important information regarding plant responses to high Mn in the rooting environment.

Collaboration


Dive into the Brigid A. McKenna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peng Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Enzo Lombi

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erica Donner

University of South Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge