Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neal W. Menzies is active.

Publication


Featured researches published by Neal W. Menzies.


Soil Research | 2005

Competitive sorption reactions between phosphorus and organic matter in soil: a review

Christopher N. Guppy; Neal W. Menzies; Phil Moody; F. P. C. Blamey

The incorporation of organic matter ( OM) in soils that are able to rapidly sorb applied phosphorus ( P) fertiliser reportedly increases P availability to plants. This effect has commonly been ascribed to competition between the decomposition products of OM and P for soil sorption sites resulting in increased soil solution P concentrations. The evidence for competitive inhibition of P sorption by dissolved organic carbon compounds, derived from the breakdown of OM, includes studies on the competition between P and (i) low molecular weight organic acids (LOAs), (ii) humic and fulvic acids, and (iii) OM leachates in soils with a high P sorption capacity. These studies, however, have often used LOAs at 1 - 100 mM, concentrations much higher than those in soils ( generally < 0.05 mM). The transience of LOAs in biologically active soils further suggests that neither their concentration nor their persistence would have a practical benefit in increasing P phytoavailability. Higher molecular weight compounds such as humic and fulvic acids also competitively inhibit P sorption; however, little consideration has been given to the potential of these compounds to increase the amount of P sorbed through metal - chelate linkages. We suggest that the magnitude of the inhibition of P sorption by the decomposition products of OM leachate is negligible at rates equivalent to those of OM applied in the field. Incubation of OM in soil has also commonly been reported as reducing P sorption in soil. However, we consider that the reported decreases in P sorption ( as measured by P in the soil solution) are not related to competition from the decomposition products of OM breakdown, but are the result of P release from the OM that was not accounted for when calculating the reduction in P sorption.


Journal of Experimental Botany | 2010

Trace metal phytotoxicity in solution culture: a review

Peter M. Kopittke; F. Pax C. Blamey; C. J. Asher; Neal W. Menzies

Solution culture has been used extensively to determine the phytotoxic effects of trace metals. A review of the literature from 1975 to 2009 was carried out to evaluate the effects of As(V), Cd(II), Co(II), Cu(II), Hg(II), Mn(II), Ni(II), Pb(II), and Zn(II) on plants grown in solution. A total of 119 studies was selected using criteria that allowed a valid comparison of the results; reported toxic concentrations varied by five orders of magnitude. Across a range of plant species and experimental conditions, the phytotoxicity of the trace metals followed the trend (from most to least toxic): Pb approximately Hg >Cu >Cd approximately As >Co approximately Ni approximately Zn >Mn, with median toxic concentrations of (muM): 0.30 Pb, 0.47 Hg, 2.0 Cu, 5.0 Cd, 9.0 As, 17 Co, 19 Ni, 25 Zn, and 46 Mn. For phytotoxicity studies in solution culture, we suggest (i) plants should be grown in a dilute solution which mimics the soil solution, or that, at a minimum, contains Ca and B, (ii) solution pH should be monitored and reported (as should the concentrations of the trace metal of interest), (iii) assessment should be made of the influence of pH on solution composition and ion speciation, and (iv) both the period of exposure to the trace metal and the plant variable measured should be appropriate. Observing these criteria will potentially lead to reliable data on the relationship between growth depression and the concentration of the toxic metal in solution.


Environmental Science & Technology | 2013

Fate of ZnO Nanoparticles in Soils and Cowpea (Vigna unguiculata)

Peng Wang; Neal W. Menzies; Enzo Lombi; Brigid A. McKenna; Bernt Johannessen; Christopher Glover; Peter Kappen; Peter M. Kopittke

The increasing use of zinc oxide nanoparticles (ZnO-NPs) in various commercial products is prompting detailed investigation regarding the fate of these materials in the environment. There is, however, a lack of information comparing the transformation of ZnO-NPs with soluble Zn(2+) in both soils and plants. Synchrotron-based techniques were used to examine the uptake and transformation of Zn in various tissues of cowpea ( Vigna unguiculata (L.) Walp.) exposed to ZnO-NPs or ZnCl2 following growth in either solution or soil culture. In solution culture, soluble Zn (ZnCl2) was more toxic than the ZnO-NPs, although there was substantial accumulation of ZnO-NPs on the root surface. When grown in soil, however, there was no significant difference in plant growth and accumulation or speciation of Zn between soluble Zn and ZnO-NP treatments, indicating that the added ZnO-NPs underwent rapid dissolution following their entry into the soil. This was confirmed by an incubation experiment with two soils, in which ZnO-NPs could not be detected after incubation for 1 h. The speciation of Zn was similar in shoot tissues for both soluble Zn and ZnO-NPs treatments and no upward translocation of ZnO-NPs from roots to shoots was observed in either solution or soil culture. Under the current experimental conditions, the similarity in uptake and toxicity of Zn from ZnO-NPs and soluble Zn in soils indicates that the ZnO-NPs used in this study did not constitute nanospecific risks.


Soil Research | 2005

Process, performance, and pollution potential: A review of septic tank–soil absorption systems

Cara Beal; E. Gardner; Neal W. Menzies

On-site wastewater treatment and dispersal systems (OWTS) are used in non-sewered populated areas in Australia to treat and dispose of household wastewater. The most common OWTS in Australia is the septic tank-soil absorption system (SAS) - which relies on the soil to treat and disperse effluent. The mechanisms governing purification and hydraulic performance of a SAS are complex and have been shown to be highly influenced by the biological zone (biomat) which develops on the soil surface within the trench or bed. Studies suggest that removal mechanisms in the biomat zone, primarily adsorption and filtering, are important processes in the overall purification abilities of a SAS. There is growing concern that poorly functioning OWTS are impacting upon the environment, although to date, only a few investigations have been able to demonstrate pollution of waterways by on-site systems. In this paper we review some key hydrological and biogeochemical mechanisms in SAS, and the processes leading to hydraulic failure. The nutrient and pathogen removal efficiencies in soil absorption systems are also reviewed, and a critical discussion of the evidence of failure and environmental and public health impacts arising from SAS operation is presented. Future research areas identified from the review include the interactions between hydraulic and treatment mechanisms, and the biomat and sub-biomat zone gas composition and its role in effluent treatment.


Plant Physiology | 2011

In Situ Distribution and Speciation of Toxic Copper, Nickel, and Zinc in Hydrated Roots of Cowpea

Peter M. Kopittke; Neal W. Menzies; Martin D. de Jonge; Brigid A. McKenna; Erica Donner; Richard I. Webb; David Paterson; Daryl L. Howard; C.G. Ryan; Christopher Glover; Kirk G. Scheckel; Enzo Lombi

The phytotoxicity of trace metals is of global concern due to contamination of the landscape by human activities. Using synchrotron-based x-ray fluorescence microscopy and x-ray absorption spectroscopy, the distribution and speciation of copper (Cu), nickel (Ni), and zinc (Zn) was examined in situ using hydrated roots of cowpea (Vigna unguiculata) exposed to 1.5 μm Cu, 5 μm Ni, or 40 μm Zn for 1 to 24 h. After 24 h of exposure, most Cu was bound to polygalacturonic acid of the rhizodermis and outer cortex, suggesting that binding of Cu to walls of cells in the rhizodermis possibly contributes to the toxic effects of Cu. When exposed to Zn, cortical concentrations remained comparatively low with much of the Zn accumulating in the meristematic region and moving into the stele; approximately 60% to 85% of the total Zn stored as Zn phytate within 3 h of exposure. While Ni concentrations were high in both the cortex and meristem, concentrations in the stele were comparatively low. To our knowledge, this is the first report of the in situ distribution and speciation of Cu, Ni, and Zn in hydrated (and fresh) plant tissues, providing valuable information on the potential mechanisms by which they are toxic.


Soil Research | 1988

Evaluation of the influence of sample preparation and extraction technique on soil solution composition

Neal W. Menzies; L. C. Bell

Soil solutions were extracted by immiscible liquid displacement with trichlorotrifluoroethane and by centrifuge drainage from surface and subsoil samples having a wide range of chemical and physical properties. Extractions were performed on field-moist samples and on air-dry samples which were re-wetted to different matric suctions and for different lengths of time. The composition of the soil solution obtained was the same with both methods of extraction when samples had been pre-wet to a matric suction of 0.1 bar. Immiscible liquid displacement extracted solution from a krasnozem surface soil at suctions as great as 15 bar; in contrast, centrifuge drainage failed to extract solution from this soil at > 3 bar. The concentration of ions in solutions extracted by displacement from soils with increasing matric suction rose to a far greater extent than that anticipated if concentration was the only mechanism operating. In re-wet air-dry samples, major cations and anions were at equilibrium levels in solution after incubation for 1 day; longer incubation times resulted in an artificial elevation of ionic strength through mineralization of organic matter in some surface samples. The levels achieved after 1 day were similar to those present in solutions extracted from field-moist samples.


Scientia Horticulturae | 2002

Zeolite/rock phosphate—a novel slow release phosphorus fertiliser for potted plant production

Harry W. Pickering; Neal W. Menzies; Malcolm N. Hunter

Abstract A glasshouse study was undertaken to determine if the zeolite mineral clinoptilolite from an Australian deposit in combination with rock phosphate (RP) could significantly enhance the uptake of P by sunflowers. The zeolite/RP combination was intended to act as an exchange-fertiliser, with Ca 2+ exchanging onto the zeolite in response to plant uptake of nutrient cations (NH 4 + or K + ) enhancing the dissolution of the RP. A reactive RP (Sechura) and a relatively non-reactive RP (Duchess) were examined. Zeolite was used in Ca 2+ -, K + - and NH 4 + -saturated forms at ratios of 3.5:1 and 7:1 with RP; Ca 2+ -zeolite was considered the control, with exchange-induced dissolution possible from K + - and NH 4 + -zeolite. The zeolite/RP mixture was applied as a vertical band adjacent to the sunflower seedling. In addition, N was supplied as urea in an effort to determine if RP dissolution resulted from H + release by nitrification. Phosphorus supply from the zeolite/RP system was compared with an available P source (KH 2 PO 4 ). The experiment clearly demonstrated greatly enhanced plant uptake of P from RP when applied in combination with NH 4 -zeolite, though the P uptake was lower than that from the soluble P source. The zeolite/RP interaction was much more effective with the reactive RP than the non-reactive material. Within the NH 4 + -zeolite/RP band, root proliferation was greatly increased, as would be expected in an exchange-fertiliser system. The K + -zeolite system did not produce a significantly greater yield than the Ca 2+ -zeolite control, probably because adequate K + supply from the basal application reduced uptake within the zeolite/RP band, thus reducing the extent of exchange-induced dissolution. Nevertheless, increased root proliferation within the band was observed, implying that exchange-induced dissolution may also be possible from this system. The zeolite/RP system offers the considerable advantage of P release in response to plant demand and is unique in this regard.


Environmental Science & Technology | 2011

Alleviation of Cu and Pb Rhizotoxicities in Cowpea (Vigna unguiculata) as Related to Ion Activities at Root-Cell Plasma Membrane Surface

Peter M. Kopittke; Thomas B. Kinraide; Peng Wang; F. Pax C. Blamey; Suzie M. Reichman; Neal W. Menzies

Cations, such as Ca and Mg, are generally thought to alleviate toxicities of trace metals through site-specific competition (as incorporated in the biotic ligand model, BLM). Short-term experiments were conducted with cowpea (Vigna unguiculata L. Walp.) seedlings in simple nutrient solutions to examine the alleviation of Cu and Pb toxicities by Al, Ca, H, Mg, and Na. For Cu, the cations depolarized the plasma membrane (PM) and reduced the negativity of ψ(0)(o) (electrical potential at the outer surface of the PM) and thereby decreased {Cu(2+)}(0)(o) (activity of Cu(2+) at the outer surface of the PM). For Pb, root elongation was generally better correlated to the activity of Pb(2+) in the bulk solution than to {Pb(2+)}(0)(o). However, we propose that the addition of cations resulted in a decrease in {Pb(2+)}(0)(o) but a simultaneous increase in the rate of Pb uptake (due to an increase in the negativity of E(m,surf), the difference in potential between the inner and outer surfaces of the PM) thus offsetting the decrease in {Pb(2+)}(0)(o). In addition, Ca was found to alleviate Pb toxicity through a specific effect. Although our data do not preclude site-specific competition (as incorporated in the BLM), we suggest that electrostatic effects have an important role.


Communications in Soil Science and Plant Analysis | 2000

Soil carbon determination by high temperature combustion - A comparison with dichromate oxidation procedures and the influence of charcoal and carbonate carbon on the measured value

G. L. Kerven; Neal W. Menzies; M. D. Geyer

The measurement of organic carbon in soils has traditionally used dichromate oxidation procedures including the Wakley and Black and the Heanes methods. The measurement of carbon in soils by high temperature combustion is now widely used providing a rapid automated procedure without the use of toxic chemicals. This procedure however measures total carbon thus requiring some means of correction for soil samples containing carbonate and charcoal forms of carbon. This paper examines the effects of known additions of charcoal to a range of soil types on the results obtained by the Walkley and Black, Heanes and combustion methods. The results show, that while the charcoal carbon does not react under Walkley and Black conditions, some proportion does so with the Heanes method. A comparison of six Australian Soil and Plant Analysis Council reference soil samples by the three methods showed good agreement between the Heanes method, the combustion method and only slightly lower recoveries by the Walkley and Black procedure. Carbonate carbon will cause an overestimation of soil organic carbon by the combustion method thus requiring a separate determination of carbonate carbon to be applied as a correction. This work shows that a suitable acid pre-treatment of alkaline soils in the sample boats followed by a drying step eliminates the carbonate carbon prior to combustion and the need for an additional measurement. The measurement of carbon in soils by high temperature combustion in an oxygen atmosphere has been shown to be a rapid and reliable method capable of producing results in good agreement with one of the established dichromate oxidation procedures.Abstract The measurement of organic carbon in soils has traditionally used dichromate oxidation procedures including the Wakley and Black and the Heanes methods. The measurement of carbon in soils by high temperature combustion is now widely used providing a rapid automated procedure without the use of toxic chemicals. This procedure however measures total carbon thus requiring some means of correction for soil samples containing carbonate and charcoal forms of carbon. This paper examines the effects of known additions of charcoal to a range of soil types on the results obtained by the Walkley and Black, Heanes and combustion methods. The results show, that while the charcoal carbon does not react under Walkley and Black conditions, some proportion does so with the Heanes method. A comparison of six Australian Soil and Plant Analysis Council reference soil samples by the three methods showed good agreement between the Heanes method, the combustion method and only slightly lower recoveries by the Walkley and Black procedure. Carbonate carbon will cause an overestimation of soil organic carbon by the combustion method thus requiring a separate determination of carbonate carbon to be applied as a correction. This work shows that a suitable acid pre‐treatment of alkaline soils in the sample boats followed by a drying step eliminates the carbonate carbon prior to combustion and the need for an additional measurement. The measurement of carbon in soils by high temperature combustion in an oxygen atmosphere has been shown to be a rapid and reliable method capable of producing results in good agreement with one of the established dichromate oxidation procedures.


New Phytologist | 2014

Laterally resolved speciation of arsenic in roots of wheat and rice using fluorescence-XANES imaging

Peter M. Kopittke; Martin D. de Jonge; Peng Wang; Brigid A. McKenna; Enzo Lombi; David Paterson; Daryl L. Howard; Simon A. James; Kathryn Spiers; C.G. Ryan; Alexander A. T. Johnson; Neal W. Menzies

• Accumulation of arsenic (As) within plant tissues represents a human health risk, but there remains much to learn regarding the speciation of As within plants. • We developed synchrotron-based fluorescence-X-ray absorption near-edge spectroscopy (fluorescence-XANES) imaging in hydrated and fresh plant tissues to provide laterally resolved data on the in situ speciation of As in roots of wheat (Triticum aestivum) and rice (Oryza sativa) exposed to 2 μM As(V) or As(III). • When exposed to As(V), the As was rapidly reduced to As(III) within the root, with As(V) calculated to be present only in the rhizodermis. However, no uncomplexed As(III) was detected in any root tissues, because of the efficient formation of the As(III)-thiol complex - this As species was calculated to account for all of the As in the cortex and stele. The observation that uncomplexed As(III) was below the detection limit in all root tissues explains why the transport of As to the shoots is low, given that uncomplexed As(III) is the major As species transported within the xylem and phloem. • Using fluorescence-XANES imaging, we have provided in situ data showing the accumulation and transformation of As within hydrated and fresh root tissues.

Collaboration


Dive into the Neal W. Menzies's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ram C. Dalal

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Peng Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. J. Asher

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Enzo Lombi

University of South Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge