Brigitta Kurenbach
University of Canterbury
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brigitta Kurenbach.
Plasmid | 2003
Brigitta Kurenbach; Christine Bohn; Julia Prabhu; Muhtar Abudukerim; Ulrich Szewzyk; Elisabeth Grohmann
The nucleotide sequence of the transfer (tra) region of the multiresistance broad-host-range Inc18 plasmid pIP501 was completed. The 8629-bp DNA sequence encodes 10 open reading frames (orf), 9 of them are possibly involved in pIP501 conjugative transfer. The putative pIP501 tra gene products show highest similarity to the respective ORFs of the conjugative Enterococcus faecalis plasmids pRE25 and pAMbeta1, and the Streptococcus pyogenes plasmid pSM19035, respectively. ORF7 and ORF10 encode putative homologues of type IV secretion systems involved in transport of effector molecules from pathogens to host cells and in conjugative plasmid transfer in Gram-negative (G-) bacteria. pIP501 mobilized non-selftransmissible plasmids such as pMV158 between different E. faecalis strains and from E. faecalis to Bacillus subtilis. Evidence for the very broad-host-range of pIP501 was obtained by intergeneric conjugative transfer of pIP501 to a multicellular Gram-positive (G+) bacterium, Streptomyces lividans, and to G- Escherichia coli. We proved for the first time pIP501 replication, expression of its antibiotic resistance genes as well as functionality of the pIP501 tra genes in S. lividans and E. coli.
Mbio | 2015
Brigitta Kurenbach; Delphine Marjoshi; Carlos F. Amábile-Cuevas; Gayle C. Ferguson; William Godsoe; Paddy S. Gibson; Jack A. Heinemann
ABSTRACT Biocides, such as herbicides, are routinely tested for toxicity but not for sublethal effects on microbes. Many biocides are known to induce an adaptive multiple-antibiotic resistance phenotype. This can be due to either an increase in the expression of efflux pumps, a reduced synthesis of outer membrane porins, or both. Exposures of Escherichia coli and Salmonella enterica serovar Typhimurium to commercial formulations of three herbicides—dicamba (Kamba), 2,4-dichlorophenoxyacetic acid (2,4-D), and glyphosate (Roundup)—were found to induce a changed response to antibiotics. Killing curves in the presence and absence of sublethal herbicide concentrations showed that the directions and the magnitudes of responses varied by herbicide, antibiotic, and species. When induced, MICs of antibiotics of five different classes changed up to 6-fold. In some cases the MIC increased, and in others it decreased. Herbicide concentrations needed to invoke the maximal response were above current food maximum residue levels but within application levels for all herbicides. Compounds that could cause induction had additive effects in combination. The role of soxS, an inducer of the AcrAB efflux pump, was tested in β-galactosidase assays with soxS-lacZ fusion strains of E. coli. Dicamba was a moderate inducer of the sox regulon. Growth assays with Phe-Arg β-naphtylamide (PAβN), an efflux pump inhibitor, confirmed a significant role of efflux in the increased tolerance of E. coli to chloramphenicol in the presence of dicamba and to kanamycin in the presence of glyphosate. Pathways of exposure with relevance to the health of humans, domestic animals, and critical insects are discussed. IMPORTANCE Increasingly common chemicals used in agriculture, domestic gardens, and public places can induce a multiple-antibiotic resistance phenotype in potential pathogens. The effect occurs upon simultaneous exposure to antibiotics and is faster than the lethal effect of antibiotics. The magnitude of the induced response may undermine antibiotic therapy and substantially increase the probability of spontaneous mutation to higher levels of resistance. The combination of high use of both herbicides and antibiotics in proximity to farm animals and important insects, such as honeybees, might also compromise their therapeutic effects and drive greater use of antibiotics. To address the crisis of antibiotic resistance requires broadening our view of environmental contributors to the evolution of resistance. Increasingly common chemicals used in agriculture, domestic gardens, and public places can induce a multiple-antibiotic resistance phenotype in potential pathogens. The effect occurs upon simultaneous exposure to antibiotics and is faster than the lethal effect of antibiotics. The magnitude of the induced response may undermine antibiotic therapy and substantially increase the probability of spontaneous mutation to higher levels of resistance. The combination of high use of both herbicides and antibiotics in proximity to farm animals and important insects, such as honeybees, might also compromise their therapeutic effects and drive greater use of antibiotics. To address the crisis of antibiotic resistance requires broadening our view of environmental contributors to the evolution of resistance.
Archives of Virology | 2010
Luis Ortiz-Catedral; Brigitta Kurenbach; Melanie Massaro; Kate McInnes; Dianne H. Brunton; Mark E. Hauber; Darren P. Martin; Arvind Varsani
Psittacine beak and feather disease (PBFD) is a viral disease distributed worldwide with a potentially critical impact on many rare parrots. While efforts have been made to determine its prevalence in wild and captive psittacines, only limited work has been done to document complete genomes of its causative agent, beak and feather disease virus (BFDV). Here, we describe five full genomes of BFDV isolated from wild specimens of an endemic New Zealand parrot, the red-fronted parakeet (Cyanoramphus novaezelandiae). The isolates share >99% nucleotide similarity amongst themselves and ~91–92% similarity to BFDV isolates from southern Africa, Europe and Australia. A maximum-likelihood (ML) phylogenetic tree including 42 other full-genome sequences indicated that the five isolates from red-fronted parakeets represent an undescribed genotype of BFDV. These isolates are evolutionarily most closely related to the Cacatuini isolates from Thailand and the Lorinae isolates from Australia in the rep gene ML tree; however, in the cp ML tree, the evolutionary relationship is closer to viruses found in the Psittacini.
Plasmid | 2008
Marcin Filutowicz; Richard R. Burgess; Richard L. Gamelli; Jack A. Heinemann; Brigitta Kurenbach; Sheryl A. Rakowski; Ravi Shankar
A clear imperative exists to generate radically different antibacterial technologies that will reduce the usage of conventional chemical antibiotics. Here we trace one route into this new frontier of drug discovery, a concept that we call the bacterial conjugation-based technologies (BCBT). One of the objectives of the BCBT is to exploit plasmid biology for combating the rising tide of antibiotic-resistant bacteria. Specifically, the concept utilizes conjugationally delivered plasmids as antimicrobial agents, and it builds on the accumulated work of many scientists dating back to the discoveries of conjugation and plasmids themselves. Each of the individual components that comprise the approach has been demonstrated to be feasible. We discuss the properties of bacterial plasmids to be employed in BCBT.
Encyclopedia of Microbiology (Third Edition) | 2009
Jack A. Heinemann; Brigitta Kurenbach
Horizontal gene transfer (HGT) describes the reproduction of genetic material independent of organismal reproduction and is usually observed as the lateral movement of genes between organisms. In contrast to the vertical transmission of genes during organismal reproduction, genes transferred horizontally do not always become genes that pass uniformly to organismal offspring. HGT is also known as infectious transfer, exemplified by viruses and plasmids. Three classic mechanisms for HGT in microbes are transformation, the uptake of nucleic acids; transduction, virus-mediated gene transfer; and conjugation, plasmid-mediated gene transfer. This article is devoted to reviewing the processes of HGT and the current dominant models for studying HGT. Possibly all organisms, microbial or not, are significantly affected by HGT.
Genome Announcements | 2015
David A. Collings; Berwyn G. Collings; Laurel Julian; Brigitta Kurenbach; Arvind Varsani
ABSTRACT Beak and feather disease viral genomes were recovered from two deceased juvenile urban rainbow lorikeets (Trichoglossus haematodus) that lacked tail feathers. These genomes share ~95% pairwise identity with two beak and feather disease virus (BFDV) genomes identified in wild and captive Australian T. haematodus birds and ~92% identity to those in wild New Caledonian T. haematodus deplanchii birds.
Microbiology | 2017
Dorien S. Coray; Brigitta Kurenbach; Jack A. Heinemann
Post-segregational killing (PSK) is a phenotype determined by plasmids using a toxin and an antitoxin gene pair. Loss of the genes depletes the cells reserve of antitoxin and allows the toxin to act upon the cell. PSK benefits mobile elements when it increases reproductive success relative to other mobile competitors. A side effect of PSK is that plasmids become refractory to displacement from the cell during growth as a monoculture. Most PSK systems use a cytoplasmic toxin, but the external toxins of bacteriocins also have a PSK-like effect. It may be that any toxin and antitoxin gene pair can demonstrate PSK when it is on a plasmid. The secreted ribonuclease barnase and its protein inhibitor barstar have features in common with PSK modules, though their native context is chromosomal. We hypothesized that their recruitment to a plasmid could produce an emergent PSK phenotype. Others had shown that secreted barnase could exert a lethal effect on susceptible bacteria similarly to bacteriocins. However, barnase toxicity did not occur under the conditions tested, suggesting that barnase is toxic to neighbouring cells only under very specific conditions. Bacteriocins are only produced under some conditions, and some conditionality on toxin function or release may be advantageous in general to PSKs with external toxins because it would prevent killing of potential plasmid-naive hosts. Too much conditionality, however, would limit how advantageous the gene pair was to mobile elements, making the genes unlikely to be recruited as a PSK system.Post-segregational killing (PSK) is a phenotype determined by plasmids using a toxin and an antitoxin (TA) gene pair. Loss of the genes depletes the cells reserve of antitoxin and allows the toxin to act upon the cell. PSK benefits mobile elements when it increases reproductive success relative to other mobile competitors. A side effect of PSK is that plasmids become refractory to displacement from the cell during growth as a monoculture. Most PSK systems use a cytoplasmic toxin, but the external toxins of bacteriocins also have a PSK-like effect. It may be that any TA gene pair can demonstrate PSK when it is on a plasmid. The secreted ribonuclease barnase and its protein inhibitor barstar have features in common with PSK modules, though their native context is chromosomal. We hypothesised that their recruitment to a plasmid could produce an emergent PSK phenotype. Others had shown that secreted barnase could exert a lethal effect on susceptible bacteria similarly to bacteriocins. However, barnase toxicity did not occur under the conditions tested, suggesting that barnase is toxic to neighbouring cells only under very specific conditions. Bacteriocins are only produced under some conditions, and some conditionality on toxin function or release may be advantageous in general to PSKs with external toxins because it would prevent killing of potential plasmid-naïve hosts. Too much conditionality, however, would limit how advantageous the gene pair was to mobile elements, making the genes unlikely to be recruited as a PSK system.
Microbiology | 2017
Brigitta Kurenbach; Paddy S. Gibson; Amy M. Hill; Adam S. Bitzer; Mark W. Silby; William Godsoe; Jack A. Heinemann
Herbicides are frequently released into both rural and urban environments. Commercial herbicide formulations induce adaptive changes in the way bacteria respond to antibiotics. Salmonella enterica sv. Typhimurium and Escherichia coli were exposed to common co-formulants of formulations, and S. enterica sv. Typhimurium was exposed to active ingredients dicamba, 2,4-D and glyphosate to determine what ingredients of the commercial formulations caused this effect. Co-formulants Tween80 and carboxymethyl cellulose induced changes in response, but the pattern of the responses differed from the active ingredients, and effect sizes were smaller. A commercial wetting agent did not affect antibiotic responses. Active ingredients induced changes in antibiotic responses similar to those caused by complete formulations. This occurred at or below recommended application concentrations. Targeted deletion of efflux pump genes largely neutralized the adaptive response in the cases of increased survival in antibiotics, indicating that the biochemistry of induced resistance was the same for formulations and specific ingredients. We found that glyphosate, dicamba, and 2,4-D, as well as co-formulants in commercial herbicides, induced a change in susceptibility of the potentially pathogenic bacteria E. coli and S. enterica to multiple antibiotics. This was measured using the efficiency of plating (EOP), the relative survival of the bacteria when exposed to herbicide and antibiotic, or just antibiotic, compared to survival on permissive media. This work will help to inform the use of non-medicinal chemical agents that induce changes in antibiotic responses.
PeerJ | 2018
Brigitta Kurenbach; Amy M. Hill; William Godsoe; Sophie van Hamelsveld; Jack A. Heinemann
Antibiotic resistance in our pathogens is medicine’s climate change: caused by human activity, and resulting in more extreme outcomes. Resistance emerges in microbial populations when antibiotics act on phenotypic variance within the population. This can arise from either genotypic diversity (resulting from a mutation or horizontal gene transfer), or from differences in gene expression due to environmental variation, referred to as adaptive resistance. Adaptive changes can increase fitness allowing bacteria to survive at higher concentrations of antibiotics. They can also decrease fitness, potentially leading to selection for antibiotic resistance at lower concentrations. There are opportunities for other environmental stressors to promote antibiotic resistance in ways that are hard to predict using conventional assays. Exploiting our previous observation that commonly used herbicides can increase or decrease the minimum inhibitory concentration (MIC) of different antibiotics, we provide the first comprehensive test of the hypothesis that the rate of antibiotic resistance evolution under specified conditions can increase, regardless of whether a herbicide increases or decreases the antibiotic MIC. Short term evolution experiments were used for various herbicide and antibiotic combinations. We found conditions where acquired resistance arises more frequently regardless of whether the exogenous non-antibiotic agent increased or decreased antibiotic effectiveness. This is attributed to the effect of the herbicide on either MIC or the minimum selective concentration (MSC) of a paired antibiotic. The MSC is the lowest concentration of antibiotic at which the fitness of individuals varies because of the antibiotic, and is lower than MIC. Our results suggest that additional environmental factors influencing competition between bacteria could enhance the ability of antibiotics to select antibiotic resistance. Our work demonstrates that bacteria may acquire antibiotic resistance in the environment at rates substantially faster than predicted from laboratory conditions.
Archives of Virology | 2012
Melanie Massaro; Luis Ortiz-Catedral; Laurel Julian; Josie A. Galbraith; Brigitta Kurenbach; John Kearvell; Josh Kemp; Jackie van Hal; Simon Elkington; Graeme Taylor; Terry C. Greene; Jason van de Wetering; Maddie van de Wetering; Moira Pryde; Peter Dilks; Sol Heber; Tammy E. Steeves; Matthew Walters; Stephanie D. Shaw; John Potter; Melanie Farrant; Dianne H. Brunton; Mark E. Hauber; Bethany Jackson; Philip Bell; Ron Moorhouse; Kate McInnes; Arvind Varsani