Jack A. Heinemann
University of Canterbury
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jack A. Heinemann.
Science | 2008
E. Toby Kiers; Roger Leakey; Anne-Marie Izac; Jack A. Heinemann; Erika Rosenthal; Dev Nathan; Janice Jiggins
The present path of agricultural development will not achieve development goals according to a recent assessment, but a solid foundation for improvements exists.
Food Microbiology | 2008
T. Bigwood; J.A. Hudson; Craig Billington; Gwyneth V. Carey-Smith; Jack A. Heinemann
Phages infecting Salmonella Typhimurium PT160 and Campylobacter jejuni were added at a low or high (10 or 10(4)) multiplicity of infection (MOI) to either low or high (<100 or 10(4)cm(-2)) densities of host bacteria inoculated onto raw and cooked beef, and incubated at 5 and 24 degrees C to simulate refrigerated and room temperature storage. Counts of host bacteria were made throughout the incubation period, with phages being counted at the first and last sampling times. Host inactivation was variable and depended on the incubation conditions and food type. Significant host inactivations of the order of 2-3 log(10)cm(-2) at 5 degrees C and >5.9 log(10)cm(-2) at 24 degrees C were achieved compared to phage-free controls using the Salmonella phage under optimal conditions (high host cell density and MOI). These results alongside those already published indicate that phages may be useful in the control for foodborne pathogens.
Drug Discovery Today | 2000
Jack A. Heinemann; Robert G. Ankenbauer; Carlos F. Amábile-Cuevas
Important human pathogens resistant to antibiotics result from the human use of antibiotics. Does this imply that reducing their usage or removing antibiotics from medicine and agriculture will restore the effectiveness of these drugs? The authors argue that resistance evolution and susceptibility evolution are not, in a sense, just different sides of the same coin. Resistance genes acquire new functions and the initial costs of resistance can evolve into advantages. Decreasing drug use might not replace a fundamental change in drug design to avoid the evolution of resistant, and encourage the evolution of susceptible, microorganisms.
Journal of Theoretical Biology | 2004
Richard J. Weld; Christine A. Butts; Jack A. Heinemann
Phage therapy is complicated by the self-replicating nature of phage. It is difficult to extrapolate from in vitro phage growth data to in vivo expectations, difficult to interpret in vivo data and difficult to generalize from one in vivo situation to another. Various generic models of phage growth have been used as the theoretical basis for understanding the kinetics of phage therapy. Here, we have experimentally tested the efficacy of such simple models to predict, qualitatively and quantitatively, the growth of phage and the phage proliferation threshold in vitro. Naturally occurring, antibiotic-resistant bacteria were used to measure the growth of phage in vivo. In homogenous, in vitro environments, the models were predictive of T4 phage growth on Escherichia coli RR1. However, the models were not able to predict growth of T4 phage or K1-5 phage in the more complex environment of the rats digestive tract. To explore fully the kinetics of phage therapy, more complex models need to be devised. We suggest that it may be necessary to consider and model the interactions between phage growth parameters and bacterial growth parameters.
Nature Biotechnology | 2004
Jack A. Heinemann; Terje Traavik
Transgenic crops are approved for release in some countries, while many more countries are wrestling with the issue of how to conduct risk assessments. Controls on field trials often include monitoring of horizontal gene transfer (HGT) from crops to surrounding soil microorganisms. Our analysis of antibiotic-resistant bacteria and of the sensitivity of current techniques for monitoring HGT from transgenic plants to soil microorganisms has two major implications for field trial assessments of transgenic crops: first, HGT from transgenic plants to microbes could still have an environmental impact at a frequency approximately a trillion times lower than the current risk assessment literature estimates the frequency to be; and second, current methods of environmental sampling to capture genes or traits in a recombinant are too insensitive for monitoring evolution by HGT. A model for HGT involving iterative short-patch events explains how HGT can occur at high frequencies but be detected at extremely low frequencies.
Trends in Genetics | 1991
Jack A. Heinemann
Bacteria transfer genetic information to members of at least three of the five biological kingdoms. Gene transfer between species may play the same role as sex between members of a single species, providing genetic diversity and material for repair of genomic damage.
Environmental Sciences Europe | 2015
Angelika Hilbeck; Rosa Binimelis; Nicolas Defarge; Ricarda Steinbrecher; András Székács; Fern Wickson; Michael Antoniou; Philip L. Bereano; Ethel Ann Clark; Michael Hansen; Eva Novotny; Jack A. Heinemann; Hartmut Meyer; Vandana Shiva; Brian Wynne
A broad community of independent scientific researchers and scholars challenges recent claims of a consensus over the safety of genetically modified organisms (GMOs). In the following joint statement, the claimed consensus is shown to be an artificial construct that has been falsely perpetuated through diverse fora. Irrespective of contradictory evidence in the refereed literature, as documented below, the claim that there is now a consensus on the safety of GMOs continues to be widely and often uncritically aired. For decades, the safety of GMOs has been a hotly controversial topic that has been much debated around the world. Published results are contradictory, in part due to the range of different research methods employed, an inadequacy of available procedures, and differences in the analysis and interpretation of data. Such a lack of consensus on safety is also evidenced by the agreement of policymakers from over 160 countries - in the UN’s Cartagena Biosafety Protocol and the Guidelines of the Codex Alimentarius - to authorize careful case-by-case assessment of each GMO by national authorities to determine whether the particular construct satisfies the national criteria for ‘safe’. Rigorous assessment of GMO safety has been hampered by the lack of funding independent of proprietary interests. Research for the public good has been further constrained by property rights issues, and by denial of access to research material for researchers unwilling to sign contractual agreements with the developers, which confer unacceptable control over publication to the proprietary interests.The joint statement developed and signed by over 300 independent researchers, and reproduced and published below, does not assert that GMOs are unsafe or safe. Rather, the statement concludes that the scarcity and contradictory nature of the scientific evidence published to date prevents conclusive claims of safety, or of lack of safety, of GMOs. Claims of consensus on the safety of GMOs are not supported by an objective analysis of the refereed literature.
International Journal of Agricultural Sustainability | 2014
Jack A. Heinemann; Melanie Massaro; Dorien S. Coray; Sarah Zanon Agapito-Tenfen; Jiajun Dale Wen
An agroecosystem is constrained by environmental possibility and social choices, mainly in the form of government policies. To be sustainable, an agroecosystem requires production systems that are resilient to natural stressors such as disease, pests, drought, wind and salinity, and to human constructed stressors such as economic cycles and trade barriers. The world is becoming increasingly reliant on concentrated exporting agroecosystems for staple crops, and vulnerable to national and local decisions that affect resilience of these production systems. We chronicle the history of the United States staple crop agroecosystem of the Midwest region to determine whether sustainability is part of its design, or could be a likely outcome of existing policies particularly on innovation and intellectual property. Relative to other food secure and exporting countries (e.g. Western Europe), the US agroecosystem is not exceptional in yields or conservative on environmental impact. This has not been a trade-off for sustainability, as annual fluctuations in maize yield alone dwarf the loss of caloric energy from extreme historic blights. We suggest strategies for innovation that are responsive to more stakeholders and build resilience into industrialized staple crop production.
Food Microbiology | 2011
B. Bigot; W.-J. Lee; Lynn McIntyre; T. Wilson; J.A. Hudson; Craig Billington; Jack A. Heinemann
A bacteriophage (phage) that infected strains of the species Listeria monocytogenes as well as Listeria ivanovii and Listeria welshimeri, but not Listeria grayi or Listeria innocua, was isolated from sheep faeces. The phage had a contractile tail and an icosohedral head indicating that it was a myovirus, and was morphologically similar to phage A511. At 30 °C, phages added at 5.2 × 10⁷ PFU ml⁻¹ prevented the growth in broth of L. monocytogenes present at approximately twice this concentration for 7 h, but re-growth occurred such that the concentration after 24 h incubation was similar in both control and phage-treated cultures. At the same temperature, but on the surface of vacuum-packed ready-to-eat chicken breast roll, there was an immediate 2.5 log₁₀ CFU cm⁻² reduction in pathogen concentration following addition of phages and then re-growth. However, at a temperature reflecting that at which a chilled food might be held (5 °C), this re-growth was prevented over 21 days incubation. The data suggest a dose-dependent rapid reduction in pathogen concentration followed by no continued phage-mediated effect. These results, alongside other published data, indicate that a high concentration of phages per unit area is required to ensure significant inactivation of target pathogens on food surfaces.
Antimicrobial Agents and Chemotherapy | 2004
Michael V. Bland; Salim Ismail; Jack A. Heinemann; Jacqueline I. Keenan
ABSTRACT Helicobacter pylori is highly susceptible to bismuth, a heavy metal with antimicrobial activity linked to its effect on bacterial iron uptake. Three strains of H. pylori were analyzed for indicators of iron limitation following exposure to the MIC of colloidal bismuth subcitrate (MICCBS). Similar morphologic and outer membrane changes were observed following growth in iron-limiting medium and at the MICCBS that inhibited the growth of all three strains. These changes, which were also observed for iron-limited bacteria, were alleviated by the addition of iron to the cultures. H. pylori ATP levels, reduced in iron-limiting medium, were below the limits of detection in two of the three strains following exposure to bismuth. The addition of iron partially restored bacterial ATP levels in these two strains, although not to normal concentrations. In contrast, exposure of the same strains to the MICCBS failed to deplete intracellular levels of iron, which were significantly reduced by culturing in iron-limiting medium. Thus, the antimicrobial effect of bismuth and of iron limitation on H. pylori may be similar. However, the respective mechanisms of intracellular action would appear to be mediated by different pathways within the cell.